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1 Executive Summary

The new ECMWEF offline land data assimilation system (LDAS) provides fast, cycle-consistent
land-reanalysis that enable more frequent updates of land initial conditions for seasonal and
subseasonal hindcasts and improves consistency with real-time forecast initialization. In this
report it is used to initialise seasonal hindcasts with the ECMWF and Met Office prediction
systems. Its introduction leads to a small overall improvement in 2-m temperature skill in
hindcasts with the ECMWF system for both JJA and DJF, largely by improving the effective
soil-moisture—atmosphere coupling, particularly in the Southern Hemisphere during DJF,
indicating beneficial shifts in soil-moisture distribution. However, notable degradations are
seen in some areas—for example, reduced DJF T2m skill over North America, likely related
to snow-density errors, and degradations over Western Europe in JJA associated with
increasing the effective soil-moisture atmosphere coupling strength. The Met Office JJA
hindcasts show an overall negative T2m response, with causes still under investigation.

The use of LDAS initial conditions in ECMWF hindcasts improves atmospheric scores despite
degrading soil-moisture hindcast skill, relative to GLEAMv3.8, and soil-moisture analysis fit to
in-situ soil-moisture data. The LDAS also produces localized unrealistic soil-moisture trends,
potentially due to variations in SYNOP data availability. These findings align with known
behaviour in medium and short-range Numerical Weather Prediction systems: assimilating
screen-level pseudo-observations can enhance lower-atmosphere forecast skill by improving
surface fluxes, but often at the cost of soil-moisture realism. It highlights areas where the LDAS
as well as the representation of coupled land-atmosphere processes in the ECMWF model
can be improved.
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2 Introduction

The current set of contributions to the C3S Multi-model seasonal forecasting system do not
currently utilise land data assimilation (DA) in the generation of initial conditions for their
hindcasts, instead they are typically started from initial conditions generated by an “open-loop”
land model forced by reanalysis meteorology. In the case of ECMWF the realtime forecasts
with the current seasonal system SEASS5 use the operational Land DA system (LDAS) leading
to potential inconsistency with the hindcasts, which may impact the quality of operational
products.

A new "offline" LDAS has been developed at ECMWF specifically for this application. It allows
land reanalyses to be run quickly with a new model cycle and also facilitates consistent land
initial conditions between the hindcast and real-time forecasts.

In this report we evaluate the new LDAS system, and hindcasts initialised from it, and compare
these to the open-loop and hindcasts initialised from the open-loop respectively.

2.1 Background

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast
portfolio, with a focus on land-atmosphere coupling.

It will support the evolution of C3S, over the project's 4 year timescale and beyond, by
improving the C3S climate reanalysis and the seasonal prediction systems and products
towards enhanced integrity and coherence of the C3S Earth system Essential Climate
Variables.

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data
assimilation approaches and land surface initialisation techniques to pave the way for the next
generations of the C3S reanalysis and seasonal prediction systems.

These developments will be combined with innovative work on observation operator
developments integrating Artificial Intelligence (Al) to ensure optimal data fusion fully
integrated in coupled assimilation systems. They will drastically enhance the exploitation of
past, current, and future Earth system observations over land surfaces, including from the
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions,
moving towards an all-sky and all-surface approach. For example, land observations can
simultaneously improve the representation and prediction of land and atmosphere and provide
additional benefits through the coupling feedback mechanisms. Using an ensemble-based
approach will improve uncertainty estimates over land and lowest atmospheric levels.

By improving coupled land-atmosphere assimilation methods, land surface evolution, and
satellite data exploitation, R&l inputs from CERISE will improve the representation of long-
term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the
integration of the developed approaches in the core C3S (operational Service), with the
delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and
seasonal prediction demonstrator datasets (demonstrated in relevant environment).

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the
components of the seasonal prediction multi-system, directly addressing the evolving user
needs for improved and more consistent C3S Earth system products.
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2.2 Scope of this deliverable
2.2.1 Objectives of this deliverable

The aim of this deliverable is to describe a scientific assessment of the ECMWF offline LDAS
system and its impact on seasonal forecast quality. Currently, none of the seasonal forecasting
systems contributing to the C3S multi-model seasonal system utilise land-data assimilation to
constrain the land-surface state used for initial conditions. Instead, the systems run a version
of their land-model in either “offline” mode (forced with atmospheric reanalysis, such as ERA5)
or coupled to an atmospheric model that is being relaxed to reanalysis (see Day et al., 2025).
Land DA has been shown to be beneficial at subseasonal timescales (Nair et al., 2024) and
we investigate this question for the seasonal time scales with both the ECMWF and MetO
forecasting systems.

2.2.2 Work performed in this deliverable

In this deliverable the work outlined in The Description of Action (WP6 T6.2): to assess the
impact of developments in reanalysis methods, specifically the impact of land-DA, will be
described.

2.2.3 Deviations and counter measures

No deviations have been encountered.

2.2.4 Reference Documents

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement

2.2.5 CERISE Project Partners:

ECMWF European Centre for Medium-Range Weather Forecasts
Met Norway Norwegian Meteorological Institute

SMHI Swedish Meteorological and Hydrological Institute
MF Météo-France

DWD Deutscher Wetterdienst

CMCC Euro-Mediterranean Center on Climate Change
BSC Barcelona Supercomputing Centre

DMI Danish Meteorological Institute

Estellus Estellus

IPMA Portuguese Institute for Sea and Atmosphere
NILU Norwegian Institute for Air Research

MetO Met Office
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3 Summary of experiments and initial conditions

3.1 Offline land data assimilation system

As part of the Integrated Forecast System (IFS), an offline LDAS has been developed that
replicates the primary characteristics of the operational coupled land DA system employed at
ECMWEF for soil moisture and snow cover. Other variables, such as lake fields, are freely
evolving. Similar to the land assimilation in the operational IFS, the Simplified Ensemble
Kalman Filter (SEKF) assimilates European Remote Sensing Satellite Scatterometer (ERS-
SCAT; 1992-2006) and Advanced Scatterometer (ASCAT; 2007 onwards) surface soil
moisture observations, as well as Interactive Multisensor Snow and Ice Mapping System (IMS)
snow cover and pseudo screen-level observations, over 12-hour assimilation windows.
Although the SEKF algorithm is similar to the IFS algorithm, the SEKF is implemented in
'offline’ mode and is driven by atmospheric reanalysis (ERA5). For convenience, the 12-hour
assimilation windows run from 00:00 to 12:00 UTC and from 12:00 to 24:00 UTC, i.e. three
hours ahead of the long-window DA in the IFS. Soil moisture increments are added at the end
of the assimilation window. While the SEKF algorithm is similar to that of the IFS, its
implementation in "offline" mode means it is constrained by the atmospheric reanalysis ERAS.

The SEKF configuration described in de Rosnhay et al. (2013) is used, with finite differences
rather than ERAS5-EDA Jacobians, as the former was found to perform better for land
reanalysis applications. An SEKF snow analysis has also been implemented that assimilates
Cryoclim (from 1987-2010) and IMS (from 2010 onwards) snow cover observations.

3.2 Seasonal hindcast description

Here we compare pairs of seasonal hindcast experiments with and without land DA run using
the ECMWF and Met Office seasonal forecast systems. The same ECMWF analysis outputs
are used to initialise each system. The experiments in each pair differ only by the choice of
land initial conditions. One hindcast set was initialised with the ECMWF Offline Land Data
Assimilation System (LDAS) and the other was initialised with an open-loop run with the
ECMWF land-surface model ecLand.

The hindcast experiments were run with CY49R1 of the Integrated Forecasting System, in the
case of ECMWEF (see ECMWF (2025a) and ECMWF (2025b) for a description) and GloSea6-
GC3.2 (Kettleborough et al., in review) in the case of the Met Office. The ensemble size for
each hindcast is 51 for ECMWEF, and 20 for the Met Office. The hindcasts were initialised on
1st May 1993-2022 for both ECMWF and the Met Office and run over the June to August (JJA)
season, when the impact on the northern hemisphere atmospheric skill is expected to be more
significant. Further to the core intercomparison, ECMWF additionally produced a hindcast
initialised on the 1t November to examine the December to February (DJF) season

The Met Office experiments were run coupled to an ocean model, whereas the ECMWF
experiments were run in atmosphere only mode, with prescribed sea surface temperatures.
This difference will promote higher scores in the ECMWF hindcasts than the MetO but is
unlikely to strongly affect the overall difference between the LDAS and open-loop initialised
runs, which is the principal aspect that is addressed by this analysis.
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4 Results

4.1 Evaluation of ECMWF land analysis experiments

In this section we evaluate two versions of the ECMWF offline LDAS experiment compared to
an open-loop (no DA) offline simulation with ecLand. Note that these experiments are used to
initialise subsequent hindcasts by both ECMWF and MetO.

4.1.1 Soil-moisture: evaluation against in-situ

In order to demonstrate the impacts of the soil moisture and snow data assimilation in ecLand,
it was necessary to run three experiments. Two LDAS experiments were run, the first with
snow data assimilation only (ies2) and the second with both the soil and snow data
assimilation (iene). These were compared against a control open-loop experiment (ieo7). The
three experiments are listed in Table 1.

The validation was performed using in situ soil moisture (SM) and temperature (ST) data over
networks in the United States (SCAN, USCRN, SNOTEL), France (SMOSMANIA), Spain
(REMEDHUS), Germany (TORENO), Australia (OZNET) and Brazil (CEMADON ACQUA and
CEMADON AGRO). The data was collected from the International Soil Moisture Network
(ISMN, Dorigo et al., 2011; 2013). Since 2022 it has been hosted and managed by the
International Centre for Water Resources and Global Change (ICWRGC) and the Federal
Institute of Hydrology (BfG) in Germany. The analysis focusses on the period between January
2010 to December 2019, when the ISMN data coverage is highest.

Experiment Soil Moisture Snow analysis
analysis
ieo7 (control) No No
ies2 No Yes
iene Yes Yes

Table 1: List of offline land reanalysis experiments.

For Soil Moisture (SM), a total of 837 stations were used for the surface (5 cm depth) and 724
stations for the root-zone (0-1 m depth) after the quality control. The following Taylor diagrams
in Fig. 1 measure the dataset’s skill based on the correlation coefficient and the variability. In
these diagrams the perfect performance would be at the position of the star (i.e. corr=1,
normalised standard deviation=1). The surface soil moisture performance is slightly., but
significantly, degraded for iene (full LDAS) compared to the other experiments on average.
The root-zone SM performance is also slightly degraded for iene compared to the other
experiments on average. In terms of the anomaly correlation coefficients, 27.8% of the stations
for the root-zone SM were significantly degraded and 1.4% were significantly improved (see
Table 2).


https://waterandchange.org/en/
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Fig 1: Taylor diagrams showing the surface (left) and root-zone (right) SM performance for the
experiments in Table 1, averaged over 2010-2019.

For Soil Temperature (ST), a total of 701 stations were used for the surface, and 673 stations
were used for the root-zone validation after the quality control. From the Taylor diagrams (Fig
2), the performance is similar for the surface and root-zone ST for all the experiments.
However, in terms of the anomaly correlation coefficients, about 10% of the stations are
significantly degraded for the surface and root-zone ST in both LDAS experiments (iene and
ies2; see Table 2).

All networks All networks % Reference
0.0 0.0 .
0.2 1 ieo7.rd
2 ies2_rd
135} 135} 3 iene_rd
120 1201
1.05 1.05+
0.90+ 0.90
075 075
0.60 0.60
0.45 0.451
0.30+ 0.30
14
\ = o
1 o o
0.15} > 1 0.15f >
o 1 -
- T S|
0.00 S L L L " PR L L = 0.00 S L L L L L L L L =t
0.00 0.15 0.30 045 060 075 090 1.05 120 1.35 e 0.00 0.15 0.30 045 060 075 090 105 120 1.35 e
Standard deviation Standard deviation

Fig 2: Taylor diagrams showing the surface (left) and root-zone (right) ST performance for the
experiments in Table 1, averaged over 2010-2019.
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Variable Numl?er of ies2 vs control iene vs control
stations
%sig %sig %sig %sig
improved degraded improved degraded
Surface
SM 837 0 0.1 2.3 4.4
Root-zone
SM 724 0 0.3 1.4 27.8
Surface
ST 668 0.3 9.7 0.6 11.1
Root-zone
ST 670 1.0 9.2 4.0 11.6

Table 2: Table showing the % of ISMN stations where the anomaly correlation of SM and ST
is improved in each experiment relative to the control over the period 2010-2019.

The degradations in the fit to in-situ soil temperature and soil-moisture data observations are
not unexpected and are consistent with what has been seen before with the use assimilation
of screen level 2m temperature and relative humidity for soil-moisture assimilation (Draper et
al., 2011). Draper et al., (2011) showed that while the assimilation of screen level “pseudo-
observations” generally improved the skill of low-level atmospheric forecasts it often leads to
unrealistic model soil-moisture. As a result, it is not expected that the procedure will improve
the soil-moisture analysis, but it will rather improve the skill of atmospheric forecasts initialised
from the resulting analysis as has been shown for the medium-range (e.g. Drusch et al., 2009).
However, the impacts of this procedure for seasonal timescales, where soil-moisture
anomalies are a source of predictability, has not been investigated.

4.1.2 Snow: evaluation against in-situ

A database of in-situ snow course observations developed for the SNOWPEX project (Mudryk
et al., 2025) provides an independent source of verification data to compare the LDAS (iene)
and open-loop (ieo7) experiments (Fig. 3).

The LDAS has somewhat higher mean absolute errors than the open-loop, partly, but not
entirely, related to the 3m maximum bound applied to the snow water equivalent for land
reanalysis applications, resulting in the open-loop having a better fit in areas with very deep
snow (see Fig 4). It is difficult to estimate the number of independent observations in the
SNOWPEX dataset, but assuming they are independent makes the lower fit to observations
in the LDAS significant at the 1% level. Subsetting for just the less deep snowpacks, less than
1.5m results in the LDAS being a better fit for SWE, but still a poorer fit for density and depth.

In the snow assimilation, only snowcover fraction is assimilated, as a result one would not
expect much divergence in the interior of the snowpack, since for locations away from the
snow edge there shouldn't be any increments to explain this divergence between the two
experiments. Further investigation into this has revealed that the density bounds, which for
the physical model were set between 50 and 500kg m™, were set to 100 and 450kg m™ in the
version of the LDAS used in this report. This was consistent with an older version of the EC-
land model and will be corrected for future land-reanalysis runs. Additional testing to see if this
will explain the statistically significant degradation described in the paragraph above is
ongoing.
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Fig 3: Locations of snow surveys contained in the SNOWPEX dataset, coloured by the total
number of surveys during the period 1980-2021.
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Fig 4: Histograms of observations vs open-loop (left column) and observations vs LDAS (right
column) for snow water equivalent (in kg m; top row), snow depth (in m; middle row) and
snow density (in kg m™; bottom row).

4.1.3 Soil-moisture trends

Trends in root-zone soil moisture are broadly consistent between the GLEAMv3.8, LDAS and
Open-loop experiments with drying trends over SW North America, South America, Central
Africa and Western Eurasia, and wetting over India, parts of Southern Africa and high latitudes
of North America and Eurasia (Fig. 5).
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Fig 5: Trend in annual mean root-zone soil moisture from 1990-2022 using least squares
regression from GLEAMv3.8, LDAS and Open-loop experiments.

Focussing on Eurasia and North Africa we highlight some points with trends in the LDAS that
are not common with GLEAMv3.8 or the ecLand open-loop and do not look physically realistic
(Fig. 6). For example, time-series for two locations in Algeria are shown. In the first of these
there is close agreement with the open-loop until about 2005 at which point a strongly positive
trend develops that is not seen in the other timeseries (similar behaviour can also be seen at
a point in Iran). In the timeseries shown in the bottom right panel there is a negative trend
during the initial first few decades shown, with soil-moisture initially higher, but then reducing
sharply before rapidly increasing again in the last few years. It may be that such behaviour is
caused by inconsistency in the available SYNOP T2m or RH2m data, which is used to infer
soil-moisture increments, for example, a station only being present for part of the reanalysis
period.

In other locations the year-to-year variations and long-term trends are consistent with the other
experiments, suggesting the trends are a response to variations in the ERA5 forcing data
which is common to both analyses.

Fig. 6: Zoomed in version of the previous figure with timeseries for various points.

4.2 Impact of land DA in seasonal hindcasts
4.2.1 Soil-moisture

Although the mean state of soil-moisture is highly model dependent and hard to assess (e.qg.
Koster et al., 2009), seasonal hindcasts tend to do well at predicting seasonal soil-moisture
anomalies (see Day et al., 2025) due to its long persistence timescale.

Soil-moisture anomalies correlation, verified against GLEAM, are somewhat reduced overall
in the LDAS initialised ECMWF and MetO hindcasts, compared to the open-loop run, and
highly reduced in some locations (Figs 7, 8). This is potentially the impact of the issues with
trends mentioned above in Section 4.1.3.

12
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vam100 diff ace (be) lejp - ico2 against gleamrz
month 1 for may (19930501 to 20220501, 30 cases)

vam100 acc (raw) ico2 against gleamrz
month 1 for may (19930501 to 20220501, 30 cases)
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Fig 7 Anomaly correlation between JJA top 1m soil moisture (in m3/m3) in the ECMWF (top)
and MetO (bottom) control hindcast set and observed root-zone soil moisture (left) and the
difference between the corresponging LDAS initialised hindcasts and the control hindcasts
(right). The ECMWEF analysis is for 1993-2022 using theGLEAMv3.8 dataset, while the MetO
analysis is for 1993-2016 using GLEAMv4.2.

vem100 acc (raw) ico2 against gleamvz vsm100 dHff ace (raw) iejp - ico2 against gleamez
month 1 for nov (19931101 to 20211101, 29 cases) month 1 for nov (19931101 to 20211101, 29 cases)

vem100 scc in m*-Jm*-3

Fig 8: As fig 7 above but for DJF with the ECMWF hindcasts.
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4.2.2 Snow

Snow reliability assessment is performed for the two ECMWEF hindcasts iejp (with LDAS initial
conditions) and ico2 (with open-loop initial conditions) in years 1993 — 2022. Analyzed are
winter-mean (DJF) snow water equivalent (SWE) in comparison with ESA Snow-CCIlI SWE
dataset, which provides coverage in the Northern Hemisphere excluding mountainous
regions, glaciers and Greenland. Two binary events based on terciles of the long-term
distribution are considered i) low - and ii) high snow accumulation winters, that correspond to
i) lower tercile and ii) upper tercile. In order to quantify the reliability of forecasts, we apply
categorization based on the slope of the best-fit reliability line and its uncertainty following
Weisheimer and Palmer (2014). The uncertainty around the best-fit reliability line is assessed
as 90 percent confidence interval obtained from 1000 bootstrap resamples with replacement.

Fig 9 shows the results. In all cases, snow hindcasts are indicated as reliable in the Northern
Hemisphere. For low snow accumulation winters, both experiments indicate marginally useful
reliability. Despite that, the slopes of best-fit reliability lines have slightly improved in the iejp
experiment. For high snow accumulation winters, the experiment iejp shows a significant
improvement in regions Central North Asia (CNAS) and Eastern North Asia (ENAS) in terms
of snow reliability. This indicates that LDAS initial conditions contribute positively to the snow
amount in winter, especially over central and eastern Eurasia.

One should keep in mind that snow reliability assessment here is performed over the non-
mountainous terrain due to ESA Snow-CCl data availability. Performing similar assessment
against reanalysis-type products that include mountains, may result in slightly changed
reliability categories.

a9)0°N ECMWEF ico2 vs CCI, lower_tercile %)O"N ECMWEF iejp vs CCI, lower _tercile
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Fig 9. Reliability of the ECMWF snow re-forecasts in DJF 1993-2022 for (a) ico2 experiment
in low snow winters, (b) iejp experiments in low snow winters, (c) ico2 experiment in high snow
winters, and (d) iejp experiments in high snow winters. Reliability categories are color-coded
following Weisheimer and Palmer (2014) and are 5 — perfect, 4 — useful, 3 — marginally useful,
2 — not useful and 1 — dangerous.

4.2.3 Atmospheric fields and coupling

The continuous ranked probability skill score (CRPSS) of T2m in the ECMWF an MetO control
hindcasts is generally positive or zero over land in DJF (in the case of ECMWF) and JJA (for
both) except for in some regions where the strength of soil-moisture-atmosphere coupling is
too strong (regions surrounded by green contours in Figs 10 and 12) as seen in Day et al.
(2025). The metric used to assess the soil-moisture atmosphere coupling is the /sy
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2m=0(T2m)p(SM,E)p(E, T2m). This approach was initially proposed by Dirmeyer et al., (2014)
and used by Day et al. (2025) to interpret forecast errors related to soil-moisture feedback
strength.

Control experiments for both centres show similar T2m CRPSS values over land compared to
the operational hindcast sets shown in Day et al. (2025) (see their Fig 8).

It should be noted that the higher CRPSS values in the ECMWF compared to MetO, over the
ocean, are due to the fact that the ECMWF experiments are run with prescribed, time varying
SSTs and the MetO experiments are coupled to an ocean model. This difference may also
promote higher scores over land in the control run. In terms of the difference between the
LDAS and open-loop initialised runs, it is unlikely to make this biased, but may make it more
noisy.

The change in CRPSS in the ECMWF (Fig. 10) and MetO JJA hindcasts (Fig. 11) show some
common changes, such as the improvement over central Asia and reduced skill over Western
Europe and the US Midwest. However, the impact in the ECMWF model is on average positive
(i.e. an increase in CRPSS) whereas it is negative on average in the MetO system.
Nevertheless, the changes in both systems are relatively small on average globally.

In both Europe and the US Midwest during JJA the reduction in CRPSS goes hand in hand
with the coupling strength getting worse, i.e. stronger coupling although it is already too strong.
Note that we wouldn’t expect the response to be exactly the same in both experiments. The
response of a shift in the soil-moisture distribution on land-atmosphere coupling will be highly
model dependent. Similarly, soil moisture-atmosphere coupling can only be a source of skill
when soil moisture anomalies are sufficiently well forecast.

09 -08 -07 -06 -05 -04 03 -02 -01 00 @1 02 03 04 05 06 07 OB 09 012 -010 -0.08 006 -004 -002 000 0.02 0.04 0.06 0o 010 012
cnrss conrss

Fig 10: Left: CRPSS of JJA (1993-2022 ) T2m of the control hindcast compared to ERAS (filled
contours) and bias in coupling strength, /su.72n where Green contours are areas where the
SM-T2m coupling is too strong and purple too weak. Right: difference in CRPSS and /sy.r2m
between the LDAS initialised hindcast and the open-loop initialised hindcast.

dcrpss
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CRPSS CRPSS

Fig 11: As Fig 10 but for the MetO experiments.
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In DJF the ECMWF hindcasts with LDAS initial conditions show a positive impact on average
(Fig 12), with increased skill in some regions (such as parts of South America, Africa and
Australia) in the southern hemisphere where the coupling strength is getting better (inside the
purple contours) with the LDAS. However, in North America and parts of North Africa, where

).
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-09 -08 -07 -06 -05 -04 -03 -02 -01 00 ©O1 02 03 04 @5 06 07 0B 09
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Fig 12: As Fig 10 but for DJF.

To investigate deeper the impact of the LDAS in the ECMWF hindcasts in western Europe we
show a scatter plot of Evapotranspiration (ET) and Soil-moisture. It shows that the LDAS has
a wider distribution of soil-moisture values and tends to be dryer in dry years. As a result, the
dry years tend to have a lower ET in the LDAS initialised hindcast. This will have the result of
increasing T2m anomalies in those years.

Drier initial soil conditions over Europe

Change in JJA T2m CRPSS with land DA
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Fig 13: Difference in JJA (1993-2022) T2m CRPSS (using ERAS5 reference) between ECMWF
hindcasts using the LDAS and open-loop (left) and a scatter plot of evapotranspiration vs root-

leads to larger variance of evaporation

zone (or 1m) soil moisture for a region in northern France.
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5 Conclusions

The ECMWEF land data assimilation system provides a method for producing reanalysis initial
conditions consistent with each model cycle quickly, allowing for more frequent updates of
land initial conditions for seasonal and subseasonal hindcasts, and improved consistency
between hindcast and realtime forecast land initial conditions.

Here, the output of land surface assimilation is analysed, alongside results from seasonal
hindcast simulations initialised using these analyses and analyses without land data
assimilation. The evaluation of soil and snow fields against independent in-situ data shows
small but statistically significant degradations compared to the EC-land open-loop for all snow
and soil variables. In the case of the soil-moisture this is consistent with previous studies
looking at the impact of the assimilation of screen-level “pseudo-observations” (see Draper et
al., 2011 for further discussion). In the case of the snow, this may be related to incorrect
density bounds being used in the LDAS (which will be updated in the future).

The impact on T2m scores is slightly positive on average in the ECMWF hindcasts in both JJA
and DJF. The impact of the LDAS on the Met Office JJA hindcasts T2m skill is on average
slightly negative, but the causes of this need to be investigated more fully to understand these
differences.

In both the ECMWF and MetO hindcasts, the regions with the most positive improvements
tend to go hand-in-hand with reduced biases in coupling strength metric (/sm-r2m). This is most
clear in the southern hemisphere in the ECMWF DJF (austral summer) simulations. This is
telling us that there has been a shift in the initial soil-moisture distribution that improves the
effective coupling strength later in the forecasts. However, the impact is not positive
everywhere and in particular there is a large degradation in T2m CRPSS over North America
in DJF (possibly due to the snow density issue in the initial conditions). There are also some
regions where the Isu.72m gets worse and as a result CRPSS is reduced, such as Western
Europe in JJA. There is also a positive impact on SWE reliability in DJF hindcasts is positive,
(particularly in NE Eurasia).Whilst overall atmospheric skill in the ECMWF hindcasts is
increased with the use of LDAS initial conditions, the anomaly correlation of soil-moisture, with
respect to GLEAM, is on average degraded in both DJF and JJA. This is consistent with the
evaluation of soil moisture initial conditions against independent in-situ ISMN soil-moisture
and temperature data which shows small but statistically significant degradation compared to
the EC-land open-loop for all variables.

The impact on SWE reliability in DJF hindcasts is positive, (particularly in NE Eurasia).

The annual mean soil-moisture trends in the LDAS are broadly similar to the open-loop and
the GLEAMv3.8 dataset, however numerous points are identified where trends/timeseries do
not look physically realistic, possibly relating to differences in the availability of SYNOP T2m
and RH2m data.

Overall, this perspective is similar to what has been seen at medium-range timescales:
assimilation of screen-level “pseudo-observations” for soil-moisture assimilation improves
lower-atmospheric forecast skill, as a result of improving turbulent fluxes, but this is achieved
at the expense of the realism of the soil-moisture fields. See Draper et al., (2011) and Drusch
et al., (2009) for more discussion of the impacts on medium-range forecasts.
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Appendix 1

t2m diff CRPS (bc) igjp - ico2 against erab
month 1 for nov (19931101 to 20211101, 29 cases)
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Fig A1: Change in T2m CRPSS between LDAS hindcast and open-loop hindcast, with 5%
significance according random walk test (DelSol and Tippet, 2016), stippled.

t2m diff CRPS (bc) igjp - ico2 against eras
month 1 for may (19930501 to 20220501, 30 cases)
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Fig A2: As Fig A1 but for JJA.
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