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1. Executive Summary 

This report describes the development of ML-based observation operators for low frequency 

passive microwave satellite instruments to enable the direct assimilation of L1 brightness 

temperatures over land (both snow covered and snow free). A variety of ML algorithms are 

explored including multi-layer perceptrons and graph neural networks amongst others. The 

models are trained using features from the ERA5 reanalysis, surface water climatology, offline 

SURFEX model simulations and observations from the SMOS, SMAP and AMSR2 

instruments as targets. 

A thorough information content analysis is first performed to choose which model variables 

are most strongly correlated with the observed brightness temperatures or microwave 

emissivities. Then, using the chosen model features the ML observation operators are trained 

using historical data and validated using independent data not used in the training. 

The performance of the models is assessed by evaluating the predicted outputs against the 

targets using various statistical metrics. In addition, the ML observation operators are 

compared against alternative models such as climatologies of the outputs and physics-based 

models. 

Initial results show improved performance over snow-covered regions for the global emissivity 

ML-based model compared to existing climatologies. Over snow-free areas at higher 

frequencies the ML-based model struggles to outperform the climatologies due to smaller 

spatio-temporal variations in the emissivities and a lack of inter-annually varying predictors. 

At lower frequencies the ML-based model performs better where variations in emissivity are 

more strongly linked to soil moisture variations. 

For the models trained over the regional Scandinavian domain the performance varies 

depending on the time of year (related to snow accumulation and melting periods), location 

(with worse performance in complex terrain) and the choice of ML algorithm. The best 

performance is with the dynamic graph neural network but this has the downside that it is 

computationally expensive to train, so the most promising algorithm is the static graph neural 

network. The performance of this model compares favourably to the physically based CMEM 

which is promising for future data assimilation experiments. 
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2. Introduction 

This deliverable is a report to document the methodologies used to develop the machine-
learning (ML) based observation operators for use both in global (IFS) and regional 
(HARMONIE_AROME) systems in CERISE WPs 2 & 4. The training, validation, testing and 
evaluation of the operators will be described, as well as the observations and microwave 
frequencies they are targeted at, and next steps for testing in the assimilation systems will be 
outlined. 

2.1. Background 

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast 
portfolio, with a focus on land-atmosphere coupling. 

It will support the evolution of C3S, over the project’s 4 year timescale and beyond, by 
improving the C3S climate reanalysis and the seasonal prediction systems and products 
towards enhanced integrity and coherence of the C3S Earth system Essential Climate 
Variables.  

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data 
assimilation approaches and land surface initialisation techniques to pave the way for the next 
generations of the C3S reanalysis and seasonal prediction systems.  

These developments will be combined with innovative work on observation operator 
developments integrating Artificial Intelligence (AI) to ensure optimal data fusion fully 
integrated in coupled assimilation systems. They will drastically enhance the exploitation of 
past, current, and future Earth system observations over land surfaces, including from the 
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions, 
moving towards an all-sky and all-surface approach. For example, land observations can 
simultaneously improve the representation and prediction of land and atmosphere and provide 
additional benefits through the coupling feedback mechanisms. Using an ensemble-based 
approach will improve uncertainty estimates over land and lowest atmospheric levels.  

By improving coupled land-atmosphere assimilation methods, land surface evolution, and 
satellite data exploitation, R&I inputs from CERISE will improve the representation of long-
term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.   

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the 
integration of the developed approaches in the core C3S (operational Service), with the 
delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and 
seasonal prediction demonstrator datasets (demonstrated in relevant environment).  

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the 
components of the seasonal prediction multi-system, directly addressing the evolving user 
needs for improved and more consistent C3S Earth system products. 

2.2. Scope of this deliverable 

2.2.1. Objectives of this deliverable 

This deliverable documents the methodologies used to develop the ML-based observation 
operators to enable the direct assimilation of low frequency microwave level 1 radiances over 
land. 

2.2.2. Work performed in this deliverable 

In this deliverable the work outlined in WP1 T1.4 (Develop land surface observation operator 
for the low frequency passive MW (1.4-36GHz) to link MW radiances to multiple model 
variables simultaneously) is described and evaluated. The work is split into two main parts 
with one methodology designed for use in a global coupled data assimilation system described 
in section 3. A second methodology designed for use in a regional coupled data assimilation 
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system is described in section 4. The reason the work has been split in this way is because 
the two systems are sufficiently different in terms of configuration, climatology, domain 
covered and satellite data assimilated to require two separate observation operators to be 
developed. Conclusions and next steps are described in section 5. 

2.2.3. Deviations and counter measures 

No deviations have been encountered. 

2.2.4. Reference Documents 

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement 

2.2.5. CERISE Project Partners: 

ECMWF European Centre for Medium-Range Weather Forecasts 

Met Norway Norwegian Meteorological Institute 

SMHI Swedish Meteorological and Hydrological Institute 

MF Météo-France 

DWD Deutscher Wetterdienst  

CMCC Euro-Mediterranean Center on Climate Change 

BSC Barcelona Supercomputing Centre 

DMI Danish Meteorological Institute 

Estellus Estellus 

IPMA Portuguese Institute for Sea and Atmosphere 

NILU Norwegian Institute for Air Research 

MetO Met Office 
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3. ML-based observation operator for use in a global coupled 
assimilation system 

3.1.  Scope of this deliverable 
3.1.1. Objectives of this deliverable 

The need for accurate microwave surface emissivity models for all Earth surfaces has long 
been recognized (English, 1999; Weng et al., 2001), for the retrieval of surface and 
atmospheric parameters from satellites, as well as for the assimilation of surface-sensitive 
satellite observations in Numerical Weather Prediction (NWP). However, assimilating surface-
sensitive observations still remains far more difficult over continental surfaces than over the 
ocean, primarily due to their typically higher microwave emissivities, as well as complex spatial 
and temporal variability (Bormann et al., 2017). As a consequence, in NWP, a significant 
portion of the observations over continental surfaces is discarded, especially over snow-
covered surfaces. Advancing ’all-surface’ assimilation (Lawrence et al., 2019; Geer et al., 
2022) is the next challenge in NWP developments, towards coupled land-ocean-atmosphere 
assimilation (de Rosnay et al., 2022), with expected improvements for atmosphere and 
surface characterization, and consequently forecasts. 

Toward this goal, the objective of this deliverable is to develop land surface observation 
operators for the low frequency passive microwaves (1.4 - 36 GHz) to link microwave 
radiances to multiple model variables simultaneously. It will cover snow as well as snow-free 
surfaces at global scale. 

3.1.2.  Work performed in this deliverable 

The work performed in this deliverable closely followed the Description of Action (WP1.4) 

1. A large database of emissivities has been calculated directly from satellite 
measurements at the five frequencies of interest (1.4, 6, 10, 18 and 36GHz), by subtracting the 

atmospheric contribution and the surface temperature modulation from the observations. The 
emissivities are collocated with geophysical information describing the surface (snow, 
vegetation, humidity…), extracted preferably from ECMWF reanalysis. 

2. The database has been analyzed to identify the relevant surface predictor that could 
explain the emissivities. This is an essential preliminary step for the model development 
phase. Snow and snow-free surfaces are treated separately. 

3. Neural networks (NNs) have been trained to reproduce the emissivities from the 
relevant geophysical predictors. Multiple tests have been performed to reach an optimum 
solution.  

4. The NN-based observation operator for land, and snow has been delivered to 
ECMWF for tests in the ECMWF system. 

5. The simulated emissivities have been carefully evaluated, for the 5 frequencies, at 
a global scale and for all seasons. 

3.2. Preparation of the training database 
3.2.1. The satellite-derived emissivities 
3.2.1.1. The calculation method 

Microwave emissivities are directly calculated from satellite observations, removing the 
modulation by the surface temperature and the contribution from the atmosphere (gases and 
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clouds). It follows the methodology developed by Prigent et al. (1997), Karbou et al. (2008), 
Baordo and Geer (2016), or Munchak et al. (2020). 

The methodology has already been described in detail. For each frequency and polarization, 
a simplified radiative transfer equation can be written as: 

Tb = Tsurf  x emis x τ   +  T↓atm x (1- emis) x τ  +  T↑atm, 

with emis the emissivity, Tb the satellite observed brightness temperature, Tsurf the 
temperature at the surface, T↓atm the downwelling atmospheric brightness temperature at the 
surface, T↑atm the upwelling atmospheric brightness temperature contribution, and τ the 
atmospheric transmission. This leads to: 

emis = (Tb - T↑atm - T↓atm x τ ) /  (τ  x (Tsurf - T↓atm)) 

The calculation assumes that the surface temperature is the temperature of the emitting layer. 
If the radiation only emanates from the surface (i.e., the penetration depth or the sampling 
depth at that frequency is zero), the surface temperature is the actual surface “skin” 
temperature. However, emission from below the surface and volume scattering occur for a 
variety of surfaces, including snow and ice, with the penetration depth usually increasing with 
increasing wavelength. The above equations then imply an “effective” emissivity and an 
“effective” surface temperature, aggregated over the depth of penetration of the radiation 
within the sub‐surface.  

The ERA5 meteorological reanalysis provides hourly estimates of a large number of 
atmospheric and surface parameters (Hersbach et al., 2020). The ERA5 hourly surface skin 
temperature (Tskin) is selected for the emissivity calculation, spatially and temporally 
interpolated to the satellite observation location and time. In the above equations, t, T↑atm, 
T↓atm are estimated using a radiative transfer model (here Rosenkranz, 2017) and the 
atmospheric description from the ERA5 meteorological reanalyses. The cloud and rain liquid 
water effect in the atmospheric column has been taken into account, with the information 
provided by the time and space coincident ERA5 data, assuming Rayleigh‐Jeans 
approximation. However, the cloud and rain are filtered in this study, for ERA5 total liquid water 
path above 0.05 kg/m2. Note that potential scattering by liquid and ice particles is neglected, 
with limited effect expected in the considered frequency range. Uncertainties in the emissivity 
calculations have been assessed for instance in Prigent et al. (1997) and Munchak et al. 
(2020). 

3.2.1.2. The satellite data 

The emissivities are systematically calculated at the swath level from AMSR2, SMAP, and 
SMOS observations, for all land surfaces and all ocean areas that are possibly sea ice 
covered. Calculations have been performed for all available satellite data, soon after their 
launch and up to 2020. 

AMSR2 onboard the JAXA GCOM‐W1 satellite measures at 6.925, 7.3, 10.65, 18.7, 23.8, 
36.5, and 89.0 GHz, in both V and H polarizations, with an observing incidence angle of 55°, 
and with ground spatial resolutions ranging from 4 to 48 km depending on the channel 
frequency (JAXA, 2013). The AMSR2 Tbs are sourced from the JAXA data center. The level 
L1R product containing Tbs at the swath locations with original spatial resolutions is used 
(Maeda et al., 2016).  

The SMAP mission (Entekhabi et al., 2010) provides 1.4 GHz (L‐band) Tb at V and H 

polarizations at an incidence angle of 40° and with a spatial resolution of ∼40 km. The SMAP 
data are obtained from Remote Sensing Systems (RSS). The L2C product provides Tbs 
resampled onto a fixed 0.25° Earth grid (Meissner et al., 2022). Different processing stages 
are available and the Tbs corresponding to the surface emission is used here, where all other 
Tb contributions are removed with the help of auxiliary data and radiative transfer modeling. 
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The SMAP sensor benefits from an advanced Radio Frequence Interference (RFI) detector, 
and RFI‐affected Tb are not considered. 

SMOS provides multi‐angular and full‐polarization observations at L‐band (1.4 GHz) since 
2009, using a Y shaped interferometric instrument, with a spatial resolution from 35 to 50 km 
depending on the incidence angle (Kerr et al., 2010). The SMOS data are collected from the 
Center Aval de Traitement des Données SMOS (CATDS). The L3C product includes V and H 
polarization Tbs, projected onto the ground and binned into 14 fixed angle classes of 5°, from 
2.5 to 62.5° (Al Bitar et al., 2017). SMOS data affected by RFI are filtered out as much as 
possible (Uranga et al., 2022), using a threshold (0.4) on the flag provided by the CATDS. 

3.2.2. The geophysical parameters 

ERA5 reanalysis combines model outputs with multiple observations (in situ as well as 
satellites) into a globally complete and consistent data set, using physics laws (Hersbach et 
al., 2020). The data are projected onto a 0.25° regular grid in longitude and latitude. It is 
acquired through the Copernicus climate data store 
(https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis‐era5‐single‐
levels?tab=overview). 

The coincident hourly ERA5 parameters are collected, for each satellite swath data, possibly 
interpolated in space and time.  

Some key additional information is not available from ERA5 and will be sourced externally, 
such as the Above Ground Biomass or the dynamic of the surface water extent. Note that the 
selected sources for these parameters are well established and broadly used by the 
community.  

3.2.3. Practical consideration 

Data are collected over one year. For the robustness of the parameterization and for 
practicality, the initial satellite‐derived emissivities (at swath level) are projected onto a fixed 
grid of 12.5km and a 10‐day compositing is performed by averaging for each cell (and angle 
bin for SMOS). This time compositing reduces the noise observed in the instantaneous 
emissivities and it is compatible with the monthly averaging often used in other studies (for 
each month, averaging over days 1-10, 11-20, and for the rest of the month). It is important to 
ensure that the database is thoroughly cleaned to create a reliable and robust forward model. 
Climatological emissivity records at 10-day resolution are computed based on the emissivity 
database for each instrument, from the averaging of all the estimated emissivities over the 
corresponding 10‐day per year (per frequency, polarization, and possibly angle bin).  

3.3.  Parameterization methodology 
3.3.1. Joint analysis of geophysical parameters and microwave emissivities 

Before any attempt to parameterize the emissivities as a function of geophysical parameters, 
it is very important to carefully analyze the statistics of the training dataset and to analyze the 
relationship between the emissivities and the potential predictors. This step determines the 
accuracy of the forward model and its robustness.  

First, the probability density functions of the emissivities and the geophysical parameters will 
be checked, to eliminate potential outliers as well as possible artefacts. Filters will be applied 
if necessary (related to clouds, to RFI for the emissivities).  

Second, the time and space behaviors of the emissivities and geophysical parameters will be 
analyzed, with Hovmöller graphs for instance, for relevant transects. This will improve our 
understanding of the possible relationship between the emissivities and the predictors.  

Third, the correlation between the emissivities and the geophysical parameters will be 
calculated, in terms of space and time, using correlation matrix, scatter plots, and / or 
correlation maps.  

https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis%E2%80%90era5%E2%80%90single%E2%80%90levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis%E2%80%90era5%E2%80%90single%E2%80%90levels?tab=overview
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From these analyses, a set of predictors will be selected, driven by a solid physical 
understanding of the emissivity sensitivity. The snow-covered surfaces and the snow-free 
surfaces will be treated separately. 

3.3.2. Statistical model for emissivity forward operator 

This study relies on statistical models to establish links between geophysical parameters and 
emissivities. As highlighted in the joint analysis of emissivities and geophysical parameters, 
numerous geophysical parameters influence the microwave signal in a highly intricate manner, 
both spatially and temporally. Neural networks are particularly well-suited for this task, as they 
can effectively capture complex, non-linear relationships between variables. Neural networks 
have already been widely applied to regression problems in remote sensing and have recently 
demonstrated success in forward ocean emissivity modelling (Kilic et al., 2023). In this study, 
a compact Multi-Layer Perceptron (MLP) (Rosenblatt, 1961) is utilized, featuring only one 
hidden layer with a reasonable number of neurons that will depend on the predictor number. 
This type of neural network can be quickly trained and inferred on standard Central Processing 
Units (CPUs). Various configurations were tested (different number of layers and/or neurons), 
and the results indicate that the architecture of the MLP does not significantly alter the 
outcomes. The network is trained using a Bayesian regularization back-propagation algorithm, 
which ensures robust performance and reduces the probability of overfitting by constraining 
the weights of the NN (MacKay, 1992; Foresee and Hagan, 1997).  

A separate neural network is trained for each frequency. To ensure a consistent relationship 
between the V and H polarizations, a single NN is employed to predict both simultaneously. 
This approach enforces coherence between the two polarizations while maintaining flexibility 
across different frequencies. 

The data from the last ten days of each month of the initial one-year dataset of collocated 
geophysical predictors and satellite-derived emissivities are isolated to train the statistical 
model. The emissivity parameterization is then evaluated on the original data set, excluding 
the data used to train the NNs. Two major metrics assess the quality of the parameterization: 
the linear correlation coefficient R, the coefficient of determination R2 and the Root Mean 
Square Error (RMSE) calculated from the difference between the parameterized value and 
the target. Note that the systematic error (or bias) is expected to be 0 over the dataset, by 
construction of the NNs, and as a consequence, RMSE is very close to the Standard Deviation 
(StD) of the error. The probability distribution function of the parameterized and initial 
emissivities are also compared. Maps are shown and more detailed temporal analysis are 
conducted at local scale. The NN results are systematically and directly compared to the 10‐
day emissivity climatology. Here, we want to test the performance of the geophysically‐based 
emissivity parameterization, as compared to a climatology derived from satellite‐derived 
emissivity. The expectation is that a parameterization derived from geophysical variables at 
the time of the observations provides a better estimate than a climatology that is not linked to 
current surface conditions. 

3.4. The snow surfaces 
3.4.1. Preparation of the data specifically for the snow-covered land 

A full winter season is considered, in the Northern Hemisphere (continental snow-covered 
extent in the Southern Hemisphere is limited). Data are collected from the beginning of 
October 2018 to the end of May 2019. Greenland and permanent glaciers are treated 
separately, as ERA5 snow information is not available in these areas. Microwave emissivities 
are very sensitive to the presence of open ocean, and data within 80 km of the coast are 
removed to avoid any contamination. A spatial and temporal interpolation is performed to 
collocate the geophysical parameters with the satellite-derived emissivities at swath level. 
Data over 10 days are aggregated onto the same Equal-Area Scalable Earth (EASE) grid 2.0 
over the Northern Hemisphere at 12.5 km (Lambert’s equal-area, azimuthal) (Brodzik et al., 
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2012). As already mentioned, the analysis is limited to clear-sky emissivities (with ERA5 total 
liquid water path < 0.05 kg m−2). Data are kept only if the Snow Depth is above 0.02 m 

3.4.2. The predictor selection 

Figure 1 and Figure 2 present examples of satellite-derived emissivities over snow-covered 
regions, along with the collocated geophysical parameters, for two contrasting periods, in the 
middle (1–10th January 2019) and at the end (1–10th April 2019) of the winter season. The 
spatial and temporal variability of the snow emissivity is observed, depending on frequency, 
polarization, and time of the year. As expected, the snow emissivity at a given frequency is 
systematically higher in the vertical polarization than in the horizontal polarization. For a given 
location and season, the snow emissivity tends to decrease with increasing frequency. North 
of Canada and Siberia, the snow emissivity significantly drops from January to April, 
evidencing stronger volume scattering likely due to an increase in the snow grain sizes: the 
higher the frequency, the larger the emissivity decrease. The decreasing of the emissivity can 
also be linked to a deeper snowpack leading to more volume scattering. 

  

Figure 1: Average satellite-derived emissivity over ten days for selected frequencies (at 1:30 
pm for AMSR2, 6:00 am for SMOS). Only snow-covered regions are presented (Snow Depth> 
0.02 m). 

  

a)             1-10th January 2019 b)             1-10th April 2019 
Figure 2: Examples of average geophysical parameters over ten days at 1:30 pm. Only snow-
covered regions are presented (Snow Depth> 0.02 m). The two red lines on the map of Std of 
Orography of the beginning of April 2019 indicate the transect studied later in the document. 

Figure 3 presents the correlation matrix between the geophysical parameters and the 
emissivities at different frequencies for two contrasting periods in the boreal winter (January 
February, and April May), over the snow-covered Northern Hemisphere (excluding Greenland, 
as already mentioned). During mid-winter, low-frequency emissivities exhibit strong 



 

CERISE  
 

  12 

intercorrelation while the 36.5 and 89.0 GHz bands behave distinctly. In contrast, during the 
melting period, correlations among low frequencies weaken, and those among 18.7, 36.5, and 
89.0 GHz strengthen. As winter progresses, snow metamorphism increases grain size (Sturm 
and Benson, 1997), enhancing volume scattering and lowering emissivity, even at lower 
frequencies later in the season. For instance, the 18.7 GHz channel transitions from low-
frequency behavior in January to high-frequency characteristics by April. Correlations between 
snow parameters and emissivities show that Snow Depth and Snow Water Equivalent are less 
correlated with emissivities than Snow Density and Albedo. Linear relationships between 
microwave signals and Snow Depth or Snow Water Equivalent (SWE) often fail across large 
spatial or seasonal scales (Cordisco et al., 2006; Rosenfeld and Grody, 2000; Grippa et al., 
2004). Spatio-temporal correlation coefficients indicate that Snow Depth and SWE have weak 
spatial correlations but may show stronger local temporal correlations with emissivities, 
consistent with Derksen et al. (2010), who estimated SWE from 37 GHz brightness 
temperature histories. 

 

Figure 3: Linear correlation between geophysical parameters and emissivities for both mid-
winter (bottom left) and melting period (top right). AGB stands for Above Ground Biomass; 
Snow Water Eq. for Snow Water Equivalent. 

Hovmöller diagrams (Figure 4) along 110°W (latitude 40°-70°N) reveal a steady increase in 
Snow Density through winter, a key factor in snow dielectric properties (Wiesmann and 
Mätzler, 1999). However, correlations between Snow Density and emissivities above 36.5 
GHz remain limited, while low-frequency emissivities show mid-winter anticorrelation with 
Snow Density. Although dry snow is generally transparent at low frequencies, Schwank et al. 
(2015) showed it still affects emissivity through snow-air interface effects. ERA5 provides bulk 
Snow Density, though actual density varies within the snowpack; new low-density layers can 
influence high-frequency emissivities (>100 GHz) (Sandells et al., 2024). The temperature 
gradient between the surface and ground (Figure 3) is anticorrelated with low-frequency 
emissivities but positively correlated with higher frequencies, especially in spring. This reflects 
both (1) the low-frequency sensitivity to ground temperature via penetration, and (2) the 
gradient’s control on snow metamorphism, which enhances scattering and reduces high-
frequency emissivity (Josberger and Mognard, 2002). Vegetation, represented by Above 
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Ground Biomass (AGB), shows strong, frequency-increasing correlations with emissivities 
during winter (Figure 3), particularly for H-polarization. Since vegetation has high emissivity 
and weak polarization contrast (Prigent and Jimenez, 2021), it becomes dominant where snow 
emissivity is low (Derksen, 2008). Figure 4 further shows that regions with AGB > 50 Mg ha⁻¹ 
(north of 53°N) correspond to elevated emissivities at 18.7 and 36.5 GHz. Terrain relief also 
enhances emissivities, especially in H-polarization, and reduces polarization differences 
(Prigent et al., 1997; Mätzler and Standley, 2000). This is evident near 41°N and 45°N, where 
orographic variability is high. Finally, emissivity features linked to water bodies are prominent 
near 54.5°N (small lakes), 59°N (Athabasca Lake), and 68°N (the Arctic gulf). These regions 
exhibit low emissivities at 6.9 and 18.7 GHz (H-pol). During mid-winter, frozen or snow-
covered lakes show scattering at frequencies above 18.7 GHz and high polarization 
differences, indicative of residual liquid water early in the season. The gulf near 68°N becomes 
sea ice-covered after November, producing a sharp emissivity increase. Incorporating detailed 
lake and water-body information is therefore essential for accurate emissivity parameterization 
and spatial variability representation. 

 

a)    Geophysical parameters 

 

b)    Microwave emissivities for the vertical and horizontal polarizations, as well as for the 
polarization difference (V-H). 

Figure 4: Hovmöller diagrams at 110°W, from 40°N to 70°N (red line over Canada seen in Fig 
2), for both geophysical variables (a), and emissivities (b) from October 2018 to end of May 
2019). Variables without seasonal variations are represented by transect. Only snow-covered 
areas are represented, for only some of the studied frequencies. 

3.4.3. The NN parameterization results  

Following the joint analysis, a subset of geophysical variables was selected to train a neural 
network-based statistical model. Individual and various combinations of input parameters were 
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tested to determine their effectiveness, ultimately focusing on a specific configuration that 
balanced model simplicity with the inclusion of essential geophysical details. 

Table 1 presents an overview of the 10 geophysical parameters selected for this experiment, 
which were chosen based on their significant relationships with passive microwave 
emissivities, as identified in our initial analysis. 

 

Table 1: List of geophysical parameters used as input to the emissivity parameterization over 
snow-covered areas. 

Climatologies of emissivities, derived from satellite time series, have been generated for each 
10-day aggregation. These climatologies serve as a baseline method against which our results 
(i.e., the retrieved emissivities) are systematically compared. The reason for this is that we 
want to show that we can improve the current radiative transfer based on the use of 
climatological emissivities. Second, these emissivity climatologies are also considered as 
complementary inputs to the neural network parameterization, alongside the geophysical 
parameters. This is a common approach in prediction problems, where a priori knowledge of 
the variable to be predicted can be incorporated as a predictor to further constrain the 
prediction problem, if this information is available. Note that our goal is not to reproduce the 
climatologies, but the observed emissivities (also called target emissivities) with possible 
interannual variations. The climatologies act only as a first guess to guide the NN towards the 
correct emissivities. 

Figure 5 presents the statistical results for the selected NN parameterizations, over the studied 
snow-covered surfaces in the Northern Hemisphere, from October 2018 to May 2019. The NN 
parameterization that use only geophysical parameters (yellow lines on Figure 5) achieve a 
correlation coefficient (R) above ∼0.8 for all frequencies and polarizations, and an RMSE 

below ∼0.03 for frequencies up to 18.7 GHz (both polarizations) and below 0.045 for higher 
frequencies. This represents an approximate twofold reduction in error compared to using 
mean emissivities for each frequency and polarization, as indicated by the ratio of 2 or more 
between the RMSE and the standard deviation of the initial satellite-derived emissivities 
(targets), shown in the top-right panel of Figure 5. The results consistently perform better for 
V than for H polarization, as expected from the lower emissivity variability observed at V 
polarization. Comparisons between the emissivity climatologies and the target emissivities 
(black lines in Figure 5) reveal that emissivity climatologies outperform NN parameterization 
using only geophysical inputs. Previous studies have demonstrated the effectiveness of 
emissivity climatologies in capturing the spatial and temporal variability of snow signatures at 
frequencies of 18.7 GHz and above (Prigent et al., 2015; Hirahara et al., 2020) on a continental 
scale. Incorporating emissivity climatologies as inputs to the NN parameterization (in addition 
to the geophysical parameters, green lines in Figure 5) improves the agreement with the target 
emissivities. This approach treats emissivity climatologies as a priori values for the 
parameterization, while the geophysical parameters add temporal variability to better 
represent the current environmental state for the specific winter conditions. With these 
additional climatological inputs, the correlation coefficients exceed 0.9 for all frequencies and 
polarizations, and the RMSE falls below 0.02 for frequencies up to 18.7 GHz and around 0.03 
for higher frequencies. Note that R at 18.7 GHz is consistently lower than at other frequencies: 
this is attributed to the limited variability of emissivities at this frequency compared to higher 
frequencies, alongside the influence of complex scattering mechanisms. 
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Figure 5: Correlation R and Root Mean Square Error (RMSE) computed from the comparison 
of retrieved emissivities and the target values. Comparison between the emissivity 
climatologies and the target values is given in black. In red is given the StD of target 
emissivities. The solid and dashed lines correspond to V and H polarizations, respectively. 

The distributions of the retrieved emissivities (with and without climatologies) are compared to 
the original emissivity distributions and their climatologies in Figure 6. These comparisons 
reveal very similar behaviors across all frequencies and polarizations, even at high 
frequencies where the target emissivity variability is relatively large. The same figure also 
presents the distribution of emissivity errors, showing no observable biases. This represents 
a significant improvement over the results of radiative transfer models reported by Hirahara et 
al. (2020), which exhibited substantial biases, particularly at frequencies above 10 GHz. 

 

Figure 6: Top panels: Histogram of the snow-covered surfaces emissivities from the target 
(red), from the climatologies (black) and from our retrievals with two configurations of inputs 
(10 geophysical variables only (yellow) or along with emissivity climatologies (green)). Bottom 
panels: Histograms of errors, i.e., targets emissivities minus the emissivity climatology in black 
or the retrieved emissivities in the different configuration in yellow and green. The solid lines 
and dashed lines represent V and H polarizations respectively. 

Finally, Figure 7 and Figure 8 present maps of the parameterized emissivities (using 10 
variables with emissivity climatologies) and the differences between the target emissivities 
and the outputs of our method for two distinct time periods. The parameterized emissivities 
capture the large-scale spatial structures for both periods, even at high frequencies where 
pronounced latitudinal gradients are observed, influenced by complex volume scattering 
mechanisms. The difference maps further confirm this overall agreement, although some 
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regions exhibit discrepancies, particularly at higher frequencies. For more details see de Gélis 
et al, (2025). 

  

a) 1-10th January 2019 b) 1-10th April 2019 
Figure 7: Retrieved emissivities for ascending orbits (1.30 p.m. LST for AMSR2, 6.00 a.m. for 
SMOS). 

  

a) 1-10th January 2019 b) 1-10th April 2019 
Figure 8: Maps of errors, i.e., differences between target and retrieved emissivities for 
ascending orbits (1.30 p.m. LST for AMSR2, 6.00 a.m. for SMOS). 

A paper has been written on these results, and it has been published in Remote Sensing of 
Environment: 

3.5. The snow-free land surfaces 
3.5.1. Preparation of the data specifically for the snow-free land 

Observations over snow‐free land surfaces are selected for the year 2018 by retaining only 
those data for which the ERA5 snow depth is lower than 0.01 m. A spatial and temporal 
interpolation is performed to collocate the geophysical parameters with the satellite-derived 
emissivities at swath level. The resulting data are subsequently aggregated into 10‐day 
averages to increase robustness and are projected onto a regular global grid at 0.125° 
resolution. To minimize coastal contamination, observations located within 80 km of the 
coastline are discarded. In addition, only clear‐sky conditions are considered in order to avoid 
potential cloud‐related biases. For each grid cell, emissivities are retained only when at least 
five valid observations over the 10 days are available with a total cloud liquid water path (LWP) 
less than 0.05 kg·m⁻², based on ERA5. In cases where fewer than five observations are 
available, the LWP threshold is relaxed to 0.1 kg·m⁻². This adaptive filtering is introduced to 
ensure sufficient data coverage particularly in tropical regions, where persistent cloudiness 
often limits the number of available clear‐sky measurements. Penetrating deserts are 
excluded from the parameterization because the variation of emitting depth across 
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frequencies is not taken into account in the emissivity computation based on skin temperature. 
While this assumption is reasonable in most areas, it leads to large errors when not taken into 
account in penetrating areas such as very dry sands in deserts. Note that an emissivity 
parameterization for such areas is proposed in Favrichon et al. (2023). The method is based 
on the analysis of diurnal time series of brightness temperature and surface skin temperatures 
from ERA5 over the full diurnal cycle. A simplified thermal conduction model is developed to 
derive the sub-surface temperature profile, with the diurnal cycle of the ERA5 surface skin 
temperatures as a boundary condition. The emissivities and emitting depths are estimated 
from a minimization procedure, using radiative transfer calculations. Here, desert areas are 
filtered out using the aeolian aerodynamic roughness length (z0<0.15 cm) computed from 
ASCAT and PARASOL instruments (Prigent et al.,2012). 

3.5.2. The predictor selection 

For the predictor selection, our approach is to use, as much as possible, variables derived 
directly from the ERA5 reanalysis. However, ERA5 does not provide a parameter explicitly 
characterizing temporal variations in surface water extent, even though passive microwave 
emissivities at frequencies between 6 and 36 GHz are strongly influenced by the presence of 
surface water. To account for this effect, we therefore incorporate information from the Global 
Inundation Extent from Multiple Satellites, version 2 (GIEMS-2; Prigent et al., 2020). As 
GIEMS-2 is not available in near-real time, a seasonal climatology based on the period 1992–
2017 was computed for use in our analysis, consistent with the constraints of NWP 
applications. In addition, we identified discontinuities in the land-sea mask provided within the 
Cerise project. To more accurately represent permanent inland water bodies, we use the 
Global Lakes and Wetlands Database, version 2 (GLWD-2; Lehner et al., 2025). 

Figure 9 and Figure 10 illustrate examples of satellite-derived emissivities over snow-free 
regions and their corresponding collocated geophysical parameters for July 2018. Unlike the 
behavior observed over snow-covered areas at higher microwave frequencies (6–36 GHz), 
emissivities over snow-free land surfaces remain relatively stable, particularly in the vertical 
polarization. In contrast, the 1.4 GHz channel exhibits high spatial and temporal variability. For 
frequencies between 6 and 36 GHz, changes in horizontal-polarization emissivity are primarily 
driven by vegetation effects. Thereby, in this context, it is important to always analyze the 
emissivities by considering the difference of polarization (vertical minus horizontal 
emissivities), as this difference tends to approach zero in densely vegetated regions, where 
above ground biomass (AGB) or leaf area index (LAI) is high. At 1.4 GHz, the emissivity 
variability is more strongly controlled by soil moisture conditions, represented here by the Soil 
Water Volume (SWV). An increase in soil moisture generally reduces the emissivities. 
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Figure 9: Maps of emissivities at different frequencies over snow-free lands for 1-10th July 
2018. The 1.4 GHz frequency corresponds to SMAP observations while higher frequencies 
are acquired using the AMSR2 instrument. 
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Figure 10: Maps of geophysical parameters over snow-free lands for 1-10th July 2018. SWVL 
stands for Soil Water Volume Layer 1 or 2. AGB stands for Above Ground Biomass. PW is the 
permanent water bodies from GLWD2. Red lines on the StD of orography maps correspond 
to the transect studied in Figures 11, 12, 18, and 19. 

To better illustrate the spatio-temporal variability of the emissivities in relation to key 
geophysical variables, Figure 11 and Figure 12 present Hovmöller diagrams along two 
selected transects. In these figures, the GIEMS-2 inundation extent for 2018 is shown as an 
indicator for the presence of surface water. Figure 11 shows a transect across the Sahel region 
and emphasizes the strong influence of soil water volume and leaf area index on the emissivity 
signal. Although runoff from ECMWF could be used as a proxy for flood or drought conditions, 
it does not appear to correlate well with the presence of surface water during the summer 
period around 10°N (as indicated by the GIEMS 2018 data and the marked decrease in H-
polarized emissivities). Furthermore, the comparison between the GIEMS-2 2018 values and 
the long-term GIEMS-2 climatology highlights that surface inundation was considerably more 
pronounced in 2018 than in climatological conditions. This reinforces the relevance of 
incorporating explicit surface water indicators into numerical weather prediction systems.  

The transect shown in Figure 12, located in the southeastern United States, focuses on a 
region characterized by recurrent inundations of the Mississippi River. While emissivities at 
frequencies between 6 and 36 GHz remain relatively stable in most other regions, the 
presence of surface water in this area leads to a pronounced decrease in emissivity. In this 
case, the soil moisture indicator (Soil Water Volume) alone does not appear sufficient to 
capture the spatial and temporal periods during which emissivities are reduced. For instance, 
relatively high soil moisture values are found between 35°N and 38°N, whereas the 
corresponding emissivities at 1.4 GHz remain comparatively high, likely due to the influence 
of vegetation (as indicated by the Leaf Area Index, LAI). Once again, differences are evident 
between the open surface water extent provided by the GIEMS-2 climatology (GIEMS clim.) 
and that observed in 2018 (GIEMS 2018). 
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a)             Geophysical parameters 

 

b)    Microwave emissivities at different frequencies for vertical and horizontal 
polarizations, as well as for the difference of polarizations (V-H) 

Figure 11: Hovmöller diagrams at 13°E, from 0°N to 20°N (red line over Mid-Africa seen in 
Figure 10), for both geophysical variables (a), and emissivities (b) over the year 2018. 
Variables without seasonal variations are represented by transect. Only snow-free areas are 
represented, for only some of the studied frequencies. 
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a)    Geophysical parameters  

 

a)    Microwave emissivities at different frequencies for vertical and horizontal 
polarizations, as well as for the difference of polarizations (V-H) 

Figure 12: Hovmöller diagrams at 91°W, from 30°N to 45°N (red line over South-East Asia 
seen in Figure 10), for both geophysical variables (a), and emissivities (b) over the year 2018. 
Variables without seasonal variations are represented by transect. Only snow-free areas are 
represented, for only some of the studied frequencies. 

 

Figure 13 shows the correlation matrix computed over the full dataset, representing the spatial 
and temporal correlations between emissivities at different frequencies and the various 
geophysical parameters. The results highlight a strong relationship between vegetation 
variables and horizontally polarized emissivities. Consistent with the Hovmöller diagrams, 
surface water extents are clearly anti-correlated with emissivities. Soil moisture also shows a 
pronounced negative correlation with emissivity at 1.4 GHz. At higher frequencies, however, 
a positive correlation is observed in horizontal polarization, likely due to the co-occurrence of 
high soil moisture and dense vegetation, as suggested by the strong correlation between LAI 
and the Soil Water Volume (Layer 1). In addition, the standard deviation of orography exhibits 
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a slight correlation across all frequencies. Similar to vegetation effects, surface roughness 
reduces the difference between vertical and horizontal emissivities. 

 

Figure 13: Spatio-temporal correlation matrix during the full year 2018. 

To complete this analysis, Figure 14 provides density plots of LAI, soil water volume layer 1 
and GIEMS climatology with emissivities. This highlights the complex relationship between 
emissivities and the different geophysical parameters. Even if some correlations between 
geophysical variables and emissivities were observed in the above analysis the link is not 
linear.  
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a)    LAI versus emissivities. Note that horizontal lines around a LAI of 0.6 m2/m2 is 
presented because the distribution function of this variable is not continuous. 

 

b)    Soil Water Volume Layer 1 (i.e., soil moisture) versus emissivities 
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c)    Climatology of flooded areas of GIEMS versus emissivities 

Figure 14: Density plots of emissivity versus some of the geophysical variables. 

3.5.3. The NN parameterization results  

Following the joint analysis, a subset of geophysical variables was selected to train a neural 
network-based statistical model. Table 2 presents the selected geophysical parameters 
accounting for vegetation, surface water and soil moisture, and surface roughness. As for the 
snow-covered areas, different configurations were experimented and we tried to balance 
between model simplicity and the inclusion of essential variables. Note that AGB, permanent 
water (GLWD2), and StD of Orography are fixed for a given location. The LAI available in 
ERA5 reanalysis is an annual climatology. Thereby only the soil moisture indicator and the 
soil temperature are variables that are temporally dynamic. Note that the soil temperature is 
taken in average over the past 24 hours, and it is used as a predictor of frozen ground (not 
covered by snow). 

 

Table 2: Geophysical parameters selected as input to the emissivity parameterization over 
snow-free lands. Parameters in bold are time-varying and include interannual variability. 
Parameters underlined correspond to annual climatologies, meaning they exhibit intra-annual 
but no interannual variability. All remaining parameters are fixed. 

Similarly to the snow-covered surfaces, climatologies of emissivities derived from the satellite 
time series were generated for each 10-day aggregation. These climatologies are used as a 
reference against which the retrieved emissivities are systematically evaluated, with the 
objective of demonstrating potential improvements over already existing methods that rely on 
fixed climatological emissivities (such as TELSEM2). In addition, the climatological 
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emissivities are also tested as complementary predictors, functioning as a first-guess input to 
the neural network alongside the geophysical variables.  

Quantitative results over the global testing dataset for the full year are shown in Figure 15, 
from 1.4 to 36 GHz. At 1.4 GHz, results are presented using SMAP observations, since the 
global SMOS coverage is reduced due to RFI filtering. Overall, in snow-free land conditions, 
the climatological emissivities provide a strong baseline, as emissivities tend to be relatively 
stable in time, except where surface water can occur. When the neural network is trained 
without emissivity climatologies as inputs, its performance does not exceed that of the 
climatological atlas. This is particularly evident at frequencies ≥6 GHz, where the emissivity 
signal is largely controlled by vegetation and surface water. However, surface water extent is 
not explicitly represented in ERA5, and vegetation is only available in annual climatological 
form. Thus, the predictors do not capture interannual variability in these key surface 
characteristics, limiting the potential for improving beyond climatological emissivities at these 
frequencies. In contrast, at 1.4 GHz the potential for improvement is larger. The emissivity at 
this frequency is strongly modulated by soil moisture, for which time variability is represented 
in the input data. As a result, the dynamic emissivity parameterization shows an added value 
over a purely climatological approach at L-band. 

 

Figure 15: Correlation R and Root Mean Square Error (RMSE) computed from the 
comparison of retrieved emissivities and the target values. Comparison between the emissivity 
climatologies and the target values is given in black. In red is given the StD of target 
emissivities. The solid and dashed lines correspond to V and H polarizations, respectively. 

Figures 16 and 17 present maps of differences at 1.4 GHz and 6.9 GHz between the target 
and the resulting brightness temperatures (BT) obtained from both neural network (NN) 
configurations, without and with emissivity climatologies as input, as well as those derived 
using climatological emissivities alone, for two distinct periods. To facilitate comparison with 
previous studies (e.g., de Rosnay et al., 2020), emissivities were multiplied by the skin 
temperature to convert them back into the brightness temperature domain. In the experiment 
without emissivity climatologies as NN inputs, errors generally remain within 10 K, except over 
northern Canada and Siberia in July, where larger discrepancies are observed. 

Concerning the experiment including emissivity climatologies as inputs to the NN (Figure 16 
et 17 b), together with the seven geophysical parameters, or when using the climatologies 
alone (Figure 16 and 17c), the differences at higher frequencies remain comparable to those 
at 6.9 GHz, or even smaller (typically below 3 K). At 1.4 GHz, however, localized larger errors 
are observed, particularly in January over the eastern United States near the snow boundary. 
In this region, the parameterized BTs clearly outperform the climatological estimates, as the 
inclusion of soil moisture provides valuable information in areas with strong interannual 
variability. Some residual errors are also found along the Mississippi River, even at 6.9 GHz, 
although the parameterized BTs still show slightly improved performance. As shown in Figure 
12, comparison with the GIEMS surface water data in early January indicates that surface 
water extent in 2018 was lower than in the corresponding GIEMS climatology. The absence 
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of near-real-time surface water information likely limits the model’s ability to reproduce the 
observed BT and emissivity signatures associated with flooding events. In such areas, only 
soil moisture is available as a time varying input variable; however, as illustrated in Figure 12, 
soil moisture and open surface water are not redundant and each provides distinct information 
necessary for accurately predicting BTs. Similar discrepancies observed over the Paraná 
Basin in South America and across parts of India in July can be explained by the same 
limitations. 

 

 

 

a)    Difference between target and retrieved BT (NN 7 parameters) 

 

 

b)    Difference between target and retrieved BT (NN 7 parameters + emissivity 
climatologies as input) 
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c)    Difference between target and climatologies 

Figure 16: Maps of errors for the 1-10th of January 2018, i.e., differences between target and 
retrieved brightness temperatures with the NN based on 7 geophysical parameters as input 
(a), or retrieved brightness temperatures with the NN based on 7 geophysical parameters and 
emissivity climatologies as input (b) or climatologies directly (c). 

 

 

 

a)    Difference between target and retrieved BT (NN 7 parameters) 
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b)    Difference between target and retrieved BT (NN 7 parameters + emissivity 
climatologies as input) 

 

 

c)    Difference between target and climatologies 

Figure 17: Maps of errors for the 1-10th of July 2018, i.e., differences between target and 
retrieved brightness temperatures with the NN based on 7 geophysical parameters as input 
(a), or retrieved brigthness temperatures with the NN based on 7 geophysical parameters and 
emissivity climatologies as input (b) or climatologies directly (c). 

 

To complement this analysis, a more localized comparison is provided through the Hovmöller 
diagrams shown in Figures 18 and 19. In Figure 18 (at 1.4 GHz), the improvement of the 
parameterized emissivities (Fig. 18b) over the climatological values (Fig. 18c) is clearly visible. 
At higher frequencies, the climatological emissivities already provide very accurate results, 
and the advantage of the dynamic emissivity parameterization becomes less apparent. Figure 
19 highlights that the largest errors occur in regions subject to potential flooding, for example 
along the Mississippi River between 32°N and 36°N, and in May between 39°N and 42°N. In 
other parts of the Hovmöller diagrams, the results appear consistent and accurate, confirming 
the robustness of the parameterized approach under stable surface conditions. 
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a)    Difference between target and retrieved emissivities (NN 7 params.) 

 

b)    Difference between target and retrieved emissivities (NN 7 params. + climato.) 
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c)    Difference between target and emissivity climatologies 

Figure 18: Hovmöller diagrams at 25°N, from 0°E to 40°E (red line over Europe seen in Figure 
10), for both differences between target and retrieved emissivities (a and b), or emissivity 
climatologies (c) over the year 2018.  

 

 

a)    Difference between target and retrieved emissivities (NN 7 params.) 
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b)    Difference between target and retrieved emissivities (NN 7 params. + climato.) 

 

c)    Difference between target and emissivity climatologies 

Figure 19: Hovmöller diagrams at 91°W, from 30°N to 45°N (red line over South-East US 
seen in Figure 10), for both differences between target and retrieved emissivities (a and b), or 
climatologies (c) over the year 2018. Corresponding geophysical variables and target 
emissivities are provided in Figure 12. 
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3.6. Conclusion 
Satellite‐derived microwave emissivities were computed from AMSR2, SMAP, and SMOS 
observations over several years by removing atmospheric contributions and surface 
temperature effects using geophysical fields from the ERA5 reanalysis. The relationships 
between these satellite‐derived emissivities and the relevant environmental parameters were 
then analyzed in order to identify the most informative predictors for the emissivity 
parameterization. Based on this analysis, a large training database of coincident emissivities 
and geophysical parameters was assembled to develop a neural-network (NN) emissivity 
parameterization capable of providing robust emissivity estimates at continental scale. 
Existing physical models are generally unsuitable for this purpose, as they rely on detailed 
ground or snow properties that can only be obtained through in situ measurements. While 
emissivity climatologies offer reliable baseline estimates, they do not capture the actual 
instantaneous state of the surface. The proposed approach therefore links globally available 
geophysical properties with robust satellite‐derived emissivities through neural networks.  

In both the snow‐covered and snow‐free contexts, the results show that including emissivity 
climatologies as inputs, in addition to the geophysical parameters, helps guide the network 
toward more accurate emissivity estimates. Over snow-covered surfaces, most of the global 
geophysical variables available are only weakly related to snow emissivity and carry 
substantial uncertainties, which explains the need to provide emissivity climatologies as part 
of the input. In this configuration, the correlation coefficient R exceeds 0.9 for all studied 
frequencies and both polarizations, with RMSE values below 0.02 for frequencies up to 18.7 
GHz and around 0.03 for 36.5 and 89.0 GHz, and no significant bias. 

Over snow-free land surfaces, the NN results obtained without emissivity climatologies as 
input are already very accurate from 6.9 GHz upward, with RMSE values below 0.02 in 
horizontal polarization and around 0.012 in vertical polarization. Including emissivity 
climatologies further improves the performance: global metrics show RMSE values below 0.01 
for both polarizations at all frequencies between 6.9 GHz and 36.5 GHz. It is important to note 
that climatologies alone, i.e., without any dynamic emissivity parameterization, already provide 
highly accurate estimates. Although small local improvements can be observed when using 
the dynamic parameterization, no major enhancement is expected for two main reasons. First, 
because of the inherently low temporal variability of emissivities at these frequencies, 
climatological values are already very reliable. Second, the geophysical inputs that drive 
emissivity variability at such frequencies (notably open surface water and vegetation structure) 
are not represented in ERA5 in a form suitable for capturing day-to-day changes. Open 
surface water is absent, and vegetation information (via LAI) is provided only as an annual 
climatology. As a consequence, the NN does not have access to the near-real-time surface 
descriptors needed to imprint meaningful sub-seasonal variability onto the emissivity 
estimates, limiting the potential improvement over climatological atlases.  

At 1.4 GHz, emissivity variability over snow-free areas is larger. At this frequency, the RMSE 
of the experiment without any contribution from the emissivity climatology is around 0.032 and 
0.022 for horizontal and vertical polarizations, respectively. When emissivity climatologies are 
included as inputs, the RMSE decreases to below 0.02 for both polarizations. Here, the benefit 
of the dynamic emissivity parameterization over the climatology alone is more substantial 
because the key geophysical driver of emissivity at 1.4 GHz, soil moisture, exhibits real 
temporal variability in ERA5, enabling the NN to capture day-to-day changes in surface 
conditions. 

The codes developed for the emissivity parameterization are available, and constitute the 
foundation for the two forthcoming fast surface emissivity models (SURFEM) dedicated to land 
and snow surfaces, which will complement the existing SURFEM-Ocean model (Kilic et al., 
2023). The description of the codes is given in Annex I (Section 6). 

Note that a similar methodology has been developed to parameterize the sea ice emissivity. 
However, as ERA5 or the IFS has very limited information on the sea ice (only its fractional 
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coverage at that point), outputs from the sea ice model neXtSIM have been adopted as 
predictors for the model of Kilic et al (2025).  

 

4. ML-based observation operator for use in a regional coupled 
assimilation system 

4.1 Background 

Passive microwave observations contain a wealth of information of the land surface, e.g. soil 
temperature and moisture content. This information could be explored in land surface 
modelling to correct for model deficiencies, like missing precipitation. To explore these 
observations in land surface data assimilation we would need a mapping from the land surface 
state to the satellite observations. This is done with forward models or observation operators. 
Physical forward models could be limited by parameterizations and errors in auxiliary data. In 
the microwave range of the electromagnetic spectrum surface sensitive channels have large 
footprints e.g. 40 km around L-band (1.4GHz). Limited area models (LAMs) and regional 
reanalysis are operating at a resolution of 2.5 km or even finer. To address this representativity 
problem we suggest training a graph neural network that takes into account the sub-footprint 
heterogeneity of the land surface model.  

In this report we present the developments done for the regional machine learning observation 
operator, the text is based on a manuscript in preparation for publication by Blyverket et. al 
2025.  

4.2 Data and methods 

4.2.1 Land surface model and forcing data 

The SURFEX land surface modelling framework (Masson et al., 2013), is used to create the 
features in the training database. The land surface model is set up with two patches, 
representing low and high vegetation, respectively. For the soil we use the ISBA model 
(Noilhan and Mahfouf, 1996). More specific for the soil we use ISBA-DF scheme (Decharme 
et al.,2011), which models 1D water diffusion in the soil column and Fourier's law for heat 
transport. The soil is discretized into 14 layers with the same layering as in Albergel et al. 
(2017). For the high vegetation patch we use the explicit canopy option (MEB) (Boone et al., 
2017; Napoly et al., 2017). 
For the snow we use the ISBA explicit snow scheme (ISBA-ES) which is a multi-layer snow 
scheme (here 12 layers) (Decharme et al., 2016). It solves for 5 prognostic state variables; 
snow water equivalent, snow heat content, density, age and albedo.  
To drive the land surface model we use forcing from i) the MET Nordic analysis, available on 
thredds (https://thredds.met.no/thredds/catalog.html) and the CARRA (Schyberg H. et al., 
2021) regional reanalysis. The CARRA data are fetched from MARS and converted to forcing 
files that can be utilized by SURFEX through the pysurfex framework. We use 2m temperature 
and humidity, 10m wind-speed, wind direction, incoming longwave radiation, and diffuse and 
direct incoming shortwave radiation. The ISBA model is run in an open-loop mode, which 
means that no data assimilation is applied. The forcing is bilinearly interpolated to the SURFEX 
grid and the model interpolates the hourly forcing values to the 10 minute timestep.  
 

4.2.2 Satellite observations 

In our analysis we use observations from the AMSR2 sensor. This instrument sits onboard the 
GCOM-W1 Japan Aerospace Exploration Agency (JAXA) satellite. It measures passive 
microwaves in vertical and horizontal polarization at the following frequencies: 6.925, 7.3, 
10.65, 18.7, 23.8, 36.5 and 89.0 GHz. The satellite swath width is 1450 km with an incidence 
angle of 55°. It follows a polar orbit with overpasses at 1:30 am and 1:30 pm local time. In our 

https://thredds.met.no/thredds/catalog.html
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study we focus on frequencies that are sensitive to land surface variables, especially soil 
temperature and water content, and the snow state. We therefore use 10.65, 18.7 and the 
36.5 GHz channel. We use level 1 data from JAXA, it contains swath data with locations and 
spatial resolution ranging from ~7 to ~40 km depending on frequency, see Table 3 for details. 
We will refer to the different channels as 10GHz, 18GHz and 36GHz from now.  
 

Table 3: AMSR2 frequencies in this study and their characteristics. Grid points within a node 
are related to the machine learning observation operator and will be explained later.  

Frequency  10.7 GHz 18.7 GHz 36.5 GHz 

Footprint (km) 42 x 24  22 x 14 12 x 7 

Grid points within a 
node 

80 25 4 

 

4.2.3 Sensitivity analysis 

We want to build a forward model that could be applied for data assimilation for both snow 
covered and snow free surfaces. To explore which variables are related to the AMSR2 
observations for the different seasons we perform a sensitivity analysis. Here we look into how 
the ISBA land surface variables (LSVs) correlate with the AMSR2 observations. We split the 
analysis into a winter case December, January and February (DJF), which is the snow 
accumulation season and a snow melt season in March, April and May (MAM), where the 
snow is melting and contains liquid water. Finally, we consider a summer period June, July 
and August (JJA), where we expect that the AMSR2 observations are sensitive to surface soil 
moisture and temperature. We compute spatio-temporally aggregated correlation values 
between the ISBA LSVs and AMSR2 observations at different frequencies. We also compute 
temporal correlations in observation space, where we have gridded the LSVs within an 
AMSR2 footprint and report the correlations on a map.  
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Figure 20: Correlation heatmap between ISBA LSVs and AMSR2 18GHz V and H-polarization 

(top) and 10GHz V and H-polarization (bottom). The time-period is March, April and May 2018 

(left) and June, July and August (right).  

 

Figure 20 shows aggregated statistics in time and space between the ISBA LSVs and AMSR2 
18GHz (top) and 10GHz (bottom) for MAM (left) and JJA (right). For both 18GHz and 10GHz 
we note the positive correlation between surface soil moisture (WG1 and 2) for the MAM 
period. This is contradicting the microwave theory which has the inverse relationship. The 
expected negative correlation is seen for the JJA period. We also see that there is a negative 
correlation between snow depth/SWE and brightness temperature (Tb); this is higher for the 
18GHz channel than the 10GHz channel. 
 
We also see a high negative correlation between soil ice (WGI) and Tb, also more pronounced 
for 18GHz during MAM than for 10GHz. Finally, we note that there is a strong positive 
correlation between soil temperature variables and Tb. 
 
Temporal correlations for the 18GHz channel are shown in Fig 21. Top panels show the 
correlation between snow depth and Tb for DJF (left) and MAM (right). We see that in the 
snow accumulation phase this correlation is negative in large parts of the domain, however at 
the Kola peninsula it is positive. For the MAM case the relationship is stronger (R=-0.6), and 
more homogeneous, except for sampling noise in the northern part of the domain. Regions 
with strong topography and glaciers are filtered out in this figure. Leaf area index (LAI) and 
soil temperature layer 1 correlations with Tb for JJA are plotted in the bottom panel. Here we 
see a positive correlation for both variables and it is particularly strong for soil temperature.  
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Figure 21: Temporal correlation between snow depth (DSN_T_ISBA) and 18.7 GHz V-pol, 
top left) and top right) for DJF and MAM, respectively. lower left) temporal correlation between 
LAI and 18.7 GHz V-pol for JJA and lower right) temporal correlation between soil temperature 
layer 1 and 18.7 GHz V-pol for JJA.  

 

4.2.4 Forward modelling of passive microwave observations 

In this section we present the forward modelling of passive microwave observations. We 
describe the different machine learning algorithms that were tested and the physics-based 
Community Microwave Emission Model (CMEM). 
 

Machine learning forward operators 

We investigated different flavours of machine learning algorithms, each with their own 
strengths and weaknesses. Here we briefly describe the different algorithms and their 
implementation.  

First, we tested the XGBoost (eXtreme Gradient Boosting) algorithm, this model is based on 
decision trees that are updated in the training phase. In this model each grid point was 
considered a separate sample and there was no spatial context supplied to the model i.e., it 
is not able to explicitly represent the AMSR2 footprint. Our XGBoost is trained separately for 
different target variables.  
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Second, we implemented a footprint CNN (convolutional neural network) Yamashita, R. et al. 
(2018). It was developed for patches of 5 x 5 grid points. Thus it is able to learn spatial features 
within the patches. Here we make one prediction for each patch (the target is the mean 
observed value in a patch).  

Third, we implemented a Residual U-net, here a CNN is developed for the full domain, and it 
is able to learn spatial features at different spatial scales (here 6 ranging from 7.5 to 240 km). 
It creates one prediction for each grid point and the model predicts all target variables. The 
downside with this model is that it is domain dependent.  

Fourth we developed a graph neural network (GNN). In the GNN each graph has a set of 
nodes. Each node corresponds to an AMSR2 observation. Within the footprint area each node 
has a selected number of features, e.g. the ISBA LSVs grid points, see Fig 22. The area of 
the footprint is frequency dependent, thus is also the number of features for each frequency, 
see Fig. 20. We utilize a static number of grid points for each individual frequency, hence the 
GNN is said to be a static-GNN. The number of grid points for each frequency is listed in Table 
3. We also tested a GNN where the number of nodes within the swath was allowed to vary. 
This is because the observations at the edge of a swath have a larger footprint than the 
observations close to the center, hence the number of ISBA grid points within a footprint is 
larger at the edge than at the center of the swath. This dynamic (varying nodes) was tested 
and found to give better results than the static-GNN (not shown). The computational cost of 
training the static-GNN was lower than for the dynamic-GNN and summary scores did not 
suffer too much when keeping the number of nodes static. The static-GNN is evaluated 
separately in Sec. 3.1.1.  

 

Table 4: Model settings for the different machine learning algorithms tested in this work.  

Model Model or 
obs space 

Training time Training 
period 

Validation 
period 

XGBoost Model 40 min  01-09-2020 to 
01-05-2022 

01-09-2022 to 01-
06-2023 

footprint 
CNN 

Model 2 hours 01-09-2020 to 
01-05-2022 

01-09-2022 to 01-
06-2023 

Residual U-
Net 

Model 8 hours 01-09-2020 to 
01-05-2022 

01-09-2022 to 01-
06-2023 

static-GNN Observation 24 hours for 
18GHz channel 

01-09-2020 to 
01-05-2022 

01-09-2022 to 01-
06-2023 

 

In Table 4 we show characteristics of the different machine learning algorithms. They all use 
the same training and validation dataset, however the training time differs from 40 min 
(XGBoost) to 24 hours (static-GNN).  
The sensitivity analysis performed in Sec. 2.3 guides the selection of feature variables for the 
observation operator. The final set of variables are listed in Table 5. 
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Figure 22: Illustration of the dynamic/static graph neural network approach. AMSR2 footprint 

in yellow and the corresponding ISBA LSV grid points selected for that node. 

 

Table 5: List of ISBA LSV variables that we use in the static-GNN.  

Geophysical parameters 

Static Snow  Soil Vegetation 

ZS Depth Temperature LAI 

Patch fraction Density Moisture - 

Fraction of land and 

sea 

SWE Ice - 

Distance to footprint 

center 

Liquid water - - 

- Heat content  - - 

- Temperature - - 

 

Implementation in Harmonie-Arome 

The static-GNN is implemented in both the offline reanalysis system (CARRA-Land-Pv2) and 
in the coupled regional demonstrator (CARRA3-Pv1). For both systems the static-GNN is 
trained on one year of open-loop data covering the pan-Arctic domain (spinup for CARRA-
Land-Pv2). For training we utilize the 20 last days of the month (for every month) as training 
dataset and the first 10 days (of every month) for validation.  
Figure 23 shows the setup in the coupled system, here the MakeObsOpData task takes the 
FA (native Harmonie-Arome filetype) input and converts ISBA LSVs and observations into a 
graph for the static-GNN, which is then run for each ensemble member in the sfc_obsOp task. 
The LETKF (see D1.3) is extended to assimilate AMSR2 Tb in 10.7, 18.7 and 36.5 GHz V and 
H-pol.  
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Figure 23: Ecflow graphics of the static-GNN implemented in Harmonie-Arome. The 
MakeObsOpData task takes the FA (native Harmonie-Arome filetype) input and converts 
SURFEX variables and observations into a graph for the static-GNN which is then run for each 
ensemble member in the sfc_obsOp task 

Community microwave emission model (CMEM) 

The Community Microwave Emission Model (CMEM) is developed and maintained by 
ECMWF. It is a forward operator for low frequency microwave observations, see de Rosnay 
et al. (2019). CMEM has a modular structure for computing the microwave emission 
contributions from soil, vegetation, snow and the atmosphere. The code is designed to be 
highly modular and for each microwave modeling component, a choice of several 
parameterizations is considered, see 
https://confluence.ecmwf.int/display/LDAS/CMEM+Documentation. We use CMEM as a 
baseline to evaluate the static-GNN for the 10GHz channel. To ensure a fair comparison 
between CMEM and the static-GNN we run CMEM on graph level, i.e., for each node we 
compute the footprint average value of the ISBA LSV inputs. In this way we run CMEM in 
“observation” space as we do for the static-GNN. For the different module and 
parameterization options we follow Hirahara et. al (2020) as close as possible. The selected 
options are listed in Table 6.  
 

Table 6: List of parameterizations utilized in CMEM 

CMEM module Parameterization 

Soil dielectric mixing  Dobson 

Effective temperature  Chodhury 

Soil roughness Wegmuller 

Vegetation optical depth Wegmuller 

Vegetation temperature Dual 

Vegetation dielectric mixing Matzler 

https://confluence.ecmwf.int/display/LDAS/CMEM+Documentation
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Vegetation dielectric mixing 
(cold) 

Not frozen 

Snow emission model HUT single layer 

Soil volumetric moisture Input ISBA LSVs 

Atmospheric emission 
model 

Ulaby 

 

4.3 Results 

In this section we present an evaluation of the different machine learning algorithms, a closer 
look at the dynamic vs static-GNN and a comparison of the static-GNN vs CMEM. 
 

4.3.1 Evaluation of the different machine learning algorithms 

To allow for rapid prototyping and testing of different machine learning algorithms we chose a 
relatively small domain covering southern parts of Norway and western Sweden, see Fig. 24. 
The topography in this domain ranges from steep mountains to flat forested and agricultural 
areas. It also has a strong seasonal cycle with a domain average number of days with snow 
cover larger than 0.5 reaching 106.3 during the whole training/validation period.  
 
In Fig. 25 we plot predicted brightness temperature at 36.5 GHz V-pol at 18-03-2023 for 
XGBoost, footprint CNN (with stride 5), footprint CNN (with stride 1), Residual U-Net and the 
observed brightness temperature. We see that topography (and most likely snow cover and 
frozen land) are strong predictors of AMSR2 brightness temperature. We also note that the 
Residual U-Net is capturing the high brightness temperature close to the Norwegian/Swedish 
border. The Residual U-Net’s ability to learn spatial features at different spatial scales also 
improves the qualitative match between the prediction and the observation, in particular when 
compared to XGBoost which only has information at the grid point scale.  
 

 

Figure 24: Illustration of domain characteristics for the dataset used in training the machine 
learning observation operators. (Left) Surface elevation in meters, (right) number of days with 
snow fraction > 0.5 in the dataset. 

A more comprehensive analysis is shown in Fig. 26, where we plot the domain averaged mean 
absolute error (MAE) for channel 18.7 GHz V-pol for the whole validation period and for 
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different seasons, SON, DJF and MAM. Overall, the XGBoost (blue) has a larger MAE than 
the more complex methods, with the Residual U-Net showing the smallest MAE throughout 
the time-period. When we look more closely at the different seasons we see that the errors 
are smallest during fall (SON) and increasing into DJF (most likely because of snow 
accumulation). Here the differences between the models are smaller and towards the melting 
season (MAM) they overlap to a larger extent. The errors are also fluctuating more, this could 
be because of freeze/melt cycles in the snow pack during spring.  

 
Figure 25: Comparison of predicted brightness temperature at 36.5 GHz V-pol at 18-03-

2023 for XGBoost, footprint CNN (with stride 5), footprint CNN (with stride 1), Residual U-

Net and the observed brightness temperature.  

 

 

 

Figure 26: Domain average mean absolute error (MAE) for channel 18.7 GHz V-pol, for the 
different machine learning algorithms and seasons. XGBoost (blue), footprint CNN with stride 
5 (red), footprint CNN with stride 1 (grey) and the Residual U-Net (green). Shown are the 
whole period of September 2022 to May 2023 (top left) and 3-month windows SON (top right), 
DJF (bottom left) and MAM (bottom right). 

Figure 27 shows the spatial distribution of the errors. For 18GHz V-pol (top) we see that 
increased model complexity reduces the domain mean MAE. Smallest MAE are seen in flat 
regions with fewer days with snow cover (Sweden), but also in northern regions of south 
Norway and along the southern coast of Norway. In general the MAE is larger for the 36GHz 
V-pol (bottom). One plausible explanation for this could be the lack of atmospheric predictors 
in our feature list.  
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Figure 27: Time averaged mean absolute error (MAE) for the different machine learning 
algorithms. Top 18.7 GHz V-pol and bottom 36.7 GHz V-pol.  

For the 36GHz channel the smaller MAE are seen along the coast of south Norway and in the 
flat agricultural dominated regions of Sweden (compared to more forest to the north). Errors 
are particularly large inland in south Norway, without any clear explanation from topography 
or number of snow covered days (e.g. not glacier).  
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Figure 28: Pearson correlation coefficient for the different machine learning algorithms. Top 
18.7 GHz V-pol and bottom 36.7 GHz V-pol.  

Maps of temporal correlation, Fig. 28, show that there are small differences between the more 

complex models, and that the XGBoost has a much smaller correlation than the other models. 

Red regions in western Norway (with low correlation) are regions with permanent snow 

(glaciers), especially Jostedalsbreen and Folgefonna. A reason for the lower correlation in 

these regions could be because the land surface model does not represent the glacier as ice 

with snow on top, but as a very deep snowpack. The feature variables of the model are 

therefore not able to capture the variability of the observed brightness temperature.  

 

4.3.2 Dynamic vs static graph neural network 

As described above we developed two flavours of the GNN, one dynamic (with varying number 

of grid points for each node) and one static (with static number of grid points for each node). 

While the dynamic-GNN is an attractive approach, as it is able to take into account the varying 

spatial footprint of the AMSR2 instrument within a swath (larger closer to the edge vs at nadir), 

it was found to be computationally expensive. Figures 29 and 30 show bias, MAE, root-mean-

squared-error (RMSE) and correlation for the dynamic and static-GNN, respectively. Overall 

the largest differences in scores are seen for bias.  
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Figure 29: Bias, MAE, RMSE and correlation for the dynamic graph neural network, top 18.7 

GHz H-pol and bottom 18.7 GHz V-pol.  

 

 

Figure 30: Bias, MAE, RMSE and correlation for the static graph neural network, top 18.7 

GHz H-pol and bottom 18.7 GHz V-pol.  

 



 

CERISE  
 

  45 

4.3.3 Training and evaluation of the static-GNN over the CARRA East domain 

We further evaluate the static-GNN by training it over the CARRA East domain. This is a larger 
domain situated in the European Arctic. We use the same training strategy as outlined in Sec 
2.4.2. A comparison is made between the static-GNN and CMEM for an independent 
validation dataset covering 4th June 2018 until 14th August 2018. We compute mean bias and 
MAE for this time-period in observation space. By construction the ML-methods should have 
a long-term zero bias. This is seen for the static-GNN, although with some large positive bias 
in the northern parts of the domain (most likely because of few observations). Bias in CMEM 
is larger, and there is usually a need for a priori bias correction when utilizing physics based 
models as forward operator. Looking into the MAE (Fig. 31 right), we see that the static-GNN 
has a lower domain average MAE ~5.25 K vs ~7.76 for CMEM. The static-GNN shows 
particularly low MAE for inland mainland Norway.  
 

 

 
Figure 31: (Top left) Bias between observed 10GHz V-pol and static-GNN predicted for the 

time-period 04-06-2018 to 14-08-2018. (Top right) Mean absolute error (MAE) for the same 

time-period. (Bottom left) same as top left but for CMEM, (bottom right) as top right but for 

CMEM.  
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4.4 Conclusion 

In this Section we have described the implementation and testing of different machine learning 
algorithms for usage in both the offline and coupled reanalysis systems. We developed a static 
graph neural network (static-GNN) that was able to account for the spatial heterogeneity of 
the land surface model within a satellite footprint. Preliminary analysis shows that the static-
GNN model is able to outperform the physics-based CMEM which is promising for use in land 
data assimilation. The next step will be to evaluate the static-GNN for usage in an ensemble 
data assimilation system. 
 

5. ML-based observation operator for hydrological applications 

In this report we present the development of a machine-learning-based observation operator 
for assimilation of passive microwave data using data from AMSR2 sensor, land surface 
variables and a gradient boosting regressor method. 

5.1 Data and Methods 

A dataset consisting of AMSR2 brightness temperatures, Tb, at daily time step      and 10 km 
spatial resolution was compiled for the period 2019-2023 (Japan Aerospace Exploration 
Agency, 2012) for northern Sweden. The study area covers 154,700 km², extending from the 
mountains along the border with Norway to the Baltic Sea (Figure 32). The mean elevation is 
418 meters above sea level, and the landscape is predominantly characterized by forests and 
open lands. The area includes the basins of two major rivers in northern Sweden, the 
Umeälven and the Tornälven rivers. 

The semi-distributed hydrological HYPE model (Lindström et al., 2010) was used to generate 
the land surface variables. The model was set up on a grid of 0.05x0.05 degrees to create an 
interface with satellite products. To consider the influence of the surface data sub-grid 
variability, we considered their values associated with the different land cover classes within 
the AMRS2 pixels. We selected surface variables including snow depth, snow temperature 
and liquid water content, frost depth, soil moisture and      upper soil layer temperature (Table 
7). In addition, we considered the static variables of land cover fractions and spatial 
coordinates as input features (Table 7). The four-year dataset was temporally split into training 
(2019-2021) and testing (2022-2023) sets. 
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Figure 32: The map of the study area in northern Sweden with the main land cover types      

Table 7: List of the variables, target, and input features used for the development of the 
observational operator. 

 Variable Acronym 

Target Brightness temperature Tb 

Input features Snow depth sdep 

Snow surface temperature Tss 

Snow liquid water content lwcs 

Frost depth fdep 

Soil moisture fraction smf 

Upper soil / lake temperature Tusoil, Tlake 

Land cover fractions Fract 

Xcoor, Ycoord xcoord, ycoord 

We trained an eXtreme Gradient Boosting Regression (XGBoost) with the time-series of 
surface variables and the static land cover fractions and spatial coordinates to predict Tb at 
18GHz. The eXtreme gradient Boosting Regressor was selected for the capabilities in 
modelling complex non-linear relationships and variable interactions. Boosting is an ensemble 
method that constructs ensemble members sequentially. Here, the ensemble members are 
decision trees that iteratively split the input features to predict the target variable. In boosting, 
the splits are modified in each iteration to put more emphasis on the data points for which the 
model so far has performed poorly. The algorithm minimizes the loss function by finding the 
direction in which the loss function decreases the fastest (Lindholm et al., 2022).  
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The optimal parameters were found using the GridSearchCV cross-validation technique with 
a step-wise approach, minimizing the mean squared error score function. The mean absolute 
error (mae) and the root mean squared error (rmse) between observed and predicted Tb were 
calculated pixel-wise over the whole spatial domain to evaluate the model performance over 
the year and at the seasonal time scale in winter (November-March) and summer (June-
August) of 2022-2023. 

5.2 Results 

5.2.1 Data exploration 

We calculated Pearson's correlations between the brightness temperature data and the input 
features for the whole datasets (Figure 33). The highest negative correlations were found 
between brightness temperature (Tb) and snow depth of the forest open and lake classes. 
The highest positive correlations were found between brightness temperature (Tb) and the 
upper soil temperature of the forest (Tusoil) and the water temperature of the lake classes (Tl). 
Some collinearities were found among the input features such as forest fraction with open 
fraction and forest soil moisture fraction or lake temperature and upper soil temperature of the 
forest class. However, the gradient boosting regression algorithm shows small sensitivity to 
collinearity and all the features were considered. 

 

 

Figure 33: Pearson’s correlation matrix of the target (Tb) and the 11 input features (Table 7) 

for each land cover class, forest (f), open (o), wetlands (w) and lake (l) calculated over the 

entire dataset. 



 

CERISE  
 

  49 

5.2.2 Model evaluation 

The evaluation of the model showed that it generally captured the Tb spatial variability well 
(Figure 34). The mean absolute error averaged around 4 K over the year, 5 K in winter and 3 
K in summer (Figure 34).      High error occurred in a few pixels along the coast during winter, 
where the observed brightness temperatures are significantly lower than those in neighboring 
areas and are likely affected by the sea microwave emissions. The largest differences were 
observed in winter in the inland forested areas, whereas a better agreement between 
observations and predictions was found in the mountainous region above the tree line. This 
result could be due to a winter snow season in the testing dataset that differs significantly from 
that in the training dataset or due to a limitation of the HYPE model in capturing the snow 
dynamics in forested areas. The smallest differences were found in summer across the whole 
domain. The root mean squared error was slightly higher than the mean absolute error, but it 
showed similar      spatial patterns. 

Next steps include analyzing the impact of each surface variable on Tb predictions to 
understand the spatial differences in the ML-based observation operator performance we 
observed. The Python-based observation operator will be further implemented in the HYPE 
model data assimilation module using libraries for Fortran-Python interoperability. Assimilation 
of AMSR2 brightness temperatures using the operator will be tested and evaluated as part of 
the Arctic-HYPE pan-arctic hydrological re-analysis during 2026.

 

Figure 34: Map with the observed (tb), predicted brightness temperature (tb pred) at 18GHz, 

mean absolute error (mae) and root mean squared error (rmse) between observed and 

predicted tb for annual (upper),      winter (middle) and      summer (lower) 2022-2023 period 

in northern Sweden. 
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6. Conclusion and next steps 

The ML-based observation operators to estimate microwave emissivities, for both global and 
regional land data assimilation systems, have been developed using innovative methods and 
with the most advanced training data available. They have been thoroughly evaluated and 
compared to existing baseline models based on climatologies and physics-based models. The 
initial results suggest that the ML-based models are able to outperform the existing models. 
Their quality and limitations are thoroughly illustrated to help their forthcoming use in 
assimilation or other contexts.  

The next steps are to test the models in land and coupled data assimilation experiments in the 
IFS and HARMONIE-AROME. Since many developments have been conducted in this work 
package, perspectives are numerous. In particular, some ideas could be used to reconcile the 
advantages of regional models (specialization over a particular domain with specificities) and 
a global approach (able to be used easily in the assimilation scheme). Other perspectives 
could be the estimation of the uncertainties of the model (a feature that is available in TELSEM 
climatology). 

 

7. Annex I: Codes for the ML-based observation operator for use in 
a global coupled assimilation system 

7.1. The code: SURFEM-Snow 

The forward model for continental snow package is mainly composed of two MATLAB scripts 
and a folder containing resources for the modeling.  

1) forward_model_continental_snow.m: This is the main script of the proposed forward model. 
This script implements the emissivity retrieval for continental snow.  

2) test_forward_model_snow.m: This script provides examples on how to run the precedent 
script, and tests with different configurations. 

3) Resources_snow: This folder contains necessary resources to run forward_model_ 
continental_snow.m. In particular, climatologies of emissivity are used in the process to 
retrieve emissivity whether for the dynamic emissivity computation or directly for permanent 
glacier (e.g., Greenland or Antarctica) where geophysical parameters required for a dynamic 
computation are not available. These climatologies are provided in Resources_snow folder. It 
also contains flags to indicate where permanent glaciers are. Finally, it includes the Above 
Ground Biomass coming from the European Space Agency (ESA) Climate Change Initiative 
(CCI) averaged over 2018 and 2019 (Santoro et al., 2023). 

7.2. The code: SURFEM-Land 

The forward model for land package is mainly composed of two MATLAB scripts and a folder 
containing resources for the modeling.  

1) forward_model_land.m: This is the main script of the proposed forward model. This script 
implements the emissivity retrieval for land not covered with snow.  

2) test_forward_land.m: This script provides examples on how to run the precedent script, and 
tests with different configurations. 

3) Resources_land: This folder contains necessary resources to run forward_model_ land.m. 
In particular, climatologies of emissivity are used in the process to retrieve emissivity. These 
climatologies are provided in Resources_land folder. Finally, it includes the Above Ground 
Biomass coming from the European Space Agency (ESA) Climate Change Initiative (CCI) 
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averaged over 2018 and 2019 (Santoro et al., 2023), the permanent water from GLWD-v2 
(Lehner et al., 2025) and the climatology of open surface water presence computed from 
GIEMS-2 (Prigent et al., 2020). 
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