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1. Executive Summary

This report describes the development of ML-based observation operators for low frequency
passive microwave satellite instruments to enable the direct assimilation of L1 brightness
temperatures over land (both snow covered and snow free). A variety of ML algorithms are
explored including multi-layer perceptrons and graph neural networks amongst others. The
models are trained using features from the ERA5 reanalysis, surface water climatology, offline
SURFEX model simulations and observations from the SMOS, SMAP and AMSR2
instruments as targets.

A thorough information content analysis is first performed to choose which model variables
are most strongly correlated with the observed brightness temperatures or microwave
emissivities. Then, using the chosen model features the ML observation operators are trained
using historical data and validated using independent data not used in the training.

The performance of the models is assessed by evaluating the predicted outputs against the
targets using various statistical metrics. In addition, the ML observation operators are
compared against alternative models such as climatologies of the outputs and physics-based
models.

Initial results show improved performance over snow-covered regions for the global emissivity
ML-based model compared to existing climatologies. Over snow-free areas at higher
frequencies the ML-based model struggles to outperform the climatologies due to smaller
spatio-temporal variations in the emissivities and a lack of inter-annually varying predictors.
At lower frequencies the ML-based model performs better where variations in emissivity are
more strongly linked to soil moisture variations.

For the models trained over the regional Scandinavian domain the performance varies
depending on the time of year (related to snow accumulation and melting periods), location
(with worse performance in complex terrain) and the choice of ML algorithm. The best
performance is with the dynamic graph neural network but this has the downside that it is
computationally expensive to train, so the most promising algorithm is the static graph neural
network. The performance of this model compares favourably to the physically based CMEM
which is promising for future data assimilation experiments.
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2. Introduction

This deliverable is a report to document the methodologies used to develop the machine-
learning (ML) based observation operators for use both in global (IFS) and regional
(HARMONIE_AROME) systems in CERISE WPs 2 & 4. The training, validation, testing and
evaluation of the operators will be described, as well as the observations and microwave
frequencies they are targeted at, and next steps for testing in the assimilation systems will be
outlined.

2.1.Background

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast
portfolio, with a focus on land-atmosphere coupling.

It will support the evolution of C3S, over the project's 4 year timescale and beyond, by
improving the C3S climate reanalysis and the seasonal prediction systems and products
towards enhanced integrity and coherence of the C3S Earth system Essential Climate
Variables.

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data
assimilation approaches and land surface initialisation techniques to pave the way for the next
generations of the C3S reanalysis and seasonal prediction systems.

These developments will be combined with innovative work on observation operator
developments integrating Artificial Intelligence (Al) to ensure optimal data fusion fully
integrated in coupled assimilation systems. They will drastically enhance the exploitation of
past, current, and future Earth system observations over land surfaces, including from the
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions,
moving towards an all-sky and all-surface approach. For example, land observations can
simultaneously improve the representation and prediction of land and atmosphere and provide
additional benefits through the coupling feedback mechanisms. Using an ensemble-based
approach will improve uncertainty estimates over land and lowest atmospheric levels.

By improving coupled land-atmosphere assimilation methods, land surface evolution, and
satellite data exploitation, R&l inputs from CERISE will improve the representation of long-
term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the
integration of the developed approaches in the core C3S (operational Service), with the
delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and
seasonal prediction demonstrator datasets (demonstrated in relevant environment).

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the
components of the seasonal prediction multi-system, directly addressing the evolving user
needs for improved and more consistent C3S Earth system products.

2.2.Scope of this deliverable
2.2.1. Objectives of this deliverable

This deliverable documents the methodologies used to develop the ML-based observation
operators to enable the direct assimilation of low frequency microwave level 1 radiances over
land.

2.2.2. Work performed in this deliverable

In this deliverable the work outlined in WP1 T1.4 (Develop land surface observation operator
for the low frequency passive MW (1.4-36GHz) to link MW radiances to multiple model
variables simultaneously) is described and evaluated. The work is split into two main parts
with one methodology designed for use in a global coupled data assimilation system described
in section 3. A second methodology designed for use in a regional coupled data assimilation
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system is described in section 4. The reason the work has been split in this way is because
the two systems are sufficiently different in terms of configuration, climatology, domain
covered and satellite data assimilated to require two separate observation operators to be

developed. Conclusions and next steps are described in section 5.

2.2.3. Deviations and counter measures

No deviations have been encountered.

2.2.4. Reference Documents

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement

2.2.5. CERISE Project Partners:

ECMWF European Centre for Medium-Range Weather Forecasts
Met Norway Norwegian Meteorological Institute

SMHI Swedish Meteorological and Hydrological Institute
MF Météo-France

DWD Deutscher Wetterdienst

CMCC Euro-Mediterranean Center on Climate Change
BSC Barcelona Supercomputing Centre

DMI Danish Meteorological Institute

Estellus Estellus

IPMA Portuguese Institute for Sea and Atmosphere
NILU Norwegian Institute for Air Research

MetO

Met Office
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3. ML-based observation operator for use in a global coupled
assimilation system

3.1. Scope of this deliverable
3.1.1. Objectives of this deliverable

The need for accurate microwave surface emissivity models for all Earth surfaces has long
been recognized (English, 1999; Weng et al., 2001), for the retrieval of surface and
atmospheric parameters from satellites, as well as for the assimilation of surface-sensitive
satellite observations in Numerical Weather Prediction (NWP). However, assimilating surface-
sensitive observations still remains far more difficult over continental surfaces than over the
ocean, primarily due to their typically higher microwave emissivities, as well as complex spatial
and temporal variability (Bormann et al., 2017). As a consequence, in NWP, a significant
portion of the observations over continental surfaces is discarded, especially over snow-
covered surfaces. Advancing ’all-surface’ assimilation (Lawrence et al., 2019; Geer et al.,
2022) is the next challenge in NWP developments, towards coupled land-ocean-atmosphere
assimilation (de Rosnay et al., 2022), with expected improvements for atmosphere and
surface characterization, and consequently forecasts.

Toward this goal, the objective of this deliverable is to develop land surface observation
operators for the low frequency passive microwaves (1.4 - 36 GHz) to link microwave
radiances to multiple model variables simultaneously. It will cover snow as well as snow-free
surfaces at global scale.

3.1.2. Work performed in this deliverable
The work performed in this deliverable closely followed the Description of Action (WP1.4)

1. A large database of emissivities has been calculated directly from satellite
measurements at the five frequencies of interest (1.4, 6, 10, 18 and 36GHz), by subtracting the
atmospheric contribution and the surface temperature modulation from the observations. The
emissivities are collocated with geophysical information describing the surface (snow,
vegetation, humidity...), extracted preferably from ECMWF reanalysis.

2. The database has been analyzed to identify the relevant surface predictor that could
explain the emissivities. This is an essential preliminary step for the model development
phase. Snow and snow-free surfaces are treated separately.

3. Neural networks (NNs) have been trained to reproduce the emissivities from the
relevant geophysical predictors. Multiple tests have been performed to reach an optimum
solution.

4. The NN-based observation operator for land, and snow has been delivered to
ECMWEF for tests in the ECMWF system.

5. The simulated emissivities have been carefully evaluated, for the 5 frequencies, at
a global scale and for all seasons.

3.2.Preparation of the training database
3.2.1. The satellite-derived emissivities
3.2.1.1. The calculation method

Microwave emissivities are directly calculated from satellite observations, removing the
modulation by the surface temperature and the contribution from the atmosphere (gases and
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clouds). It follows the methodology developed by Prigent et al. (1997), Karbou et al. (2008),
Baordo and Geer (2016), or Munchak et al. (2020).

The methodology has already been described in detail. For each frequency and polarization,
a simplified radiative transfer equation can be written as:

Tb =Tsurf xemisxTt + Tlatmx (1-emis)x1 + Ttatm,

with emis the emissivity, Tb the satellite observed brightness temperature, Tsurf the
temperature at the surface, T|atm the downwelling atmospheric brightness temperature at the
surface, Ttatm the upwelling atmospheric brightness temperature contribution, and T the
atmospheric transmission. This leads to:

emis = (Tb-Ttatm-Tlatmx 1)/ (1 x (Tsurf - T{atm))

The calculation assumes that the surface temperature is the temperature of the emitting layer.
If the radiation only emanates from the surface (i.e., the penetration depth or the sampling
depth at that frequency is zero), the surface temperature is the actual surface “skin”
temperature. However, emission from below the surface and volume scattering occur for a
variety of surfaces, including snow and ice, with the penetration depth usually increasing with
increasing wavelength. The above equations then imply an “effective” emissivity and an
“effective” surface temperature, aggregated over the depth of penetration of the radiation
within the sub-surface.

The ERA5 meteorological reanalysis provides hourly estimates of a large number of
atmospheric and surface parameters (Hersbach et al., 2020). The ERA5 hourly surface skin
temperature (Tskin) is selected for the emissivity calculation, spatially and temporally
interpolated to the satellite observation location and time. In the above equations, t, Ttatm,
Tlatm are estimated using a radiative transfer model (here Rosenkranz, 2017) and the
atmospheric description from the ERA5 meteorological reanalyses. The cloud and rain liquid
water effect in the atmospheric column has been taken into account, with the information
provided by the time and space coincident ERAS data, assuming Rayleigh-Jeans
approximation. However, the cloud and rain are filtered in this study, for ERA5 total liquid water
path above 0.05 kg/m2. Note that potential scattering by liquid and ice particles is neglected,
with limited effect expected in the considered frequency range. Uncertainties in the emissivity
calculations have been assessed for instance in Prigent et al. (1997) and Munchak et al.
(2020).

3.2.1.2. The satellite data

The emissivities are systematically calculated at the swath level from AMSR2, SMAP, and
SMOS observations, for all land surfaces and all ocean areas that are possibly sea ice
covered. Calculations have been performed for all available satellite data, soon after their
launch and up to 2020.

AMSR2 onboard the JAXA GCOM-W1 satellite measures at 6.925, 7.3, 10.65, 18.7, 23.8,
36.5, and 89.0 GHz, in both V and H polarizations, with an observing incidence angle of 55°,
and with ground spatial resolutions ranging from 4 to 48 km depending on the channel
frequency (JAXA, 2013). The AMSR2 Tbs are sourced from the JAXA data center. The level
L1R product containing Tbs at the swath locations with original spatial resolutions is used
(Maeda et al., 2016).

The SMAP mission (Entekhabi et al., 2010) provides 1.4 GHz (L-band) Tb at V and H
polarizations at an incidence angle of 40° and with a spatial resolution of ~40 km. The SMAP
data are obtained from Remote Sensing Systems (RSS). The L2C product provides Tbs
resampled onto a fixed 0.25° Earth grid (Meissner et al., 2022). Different processing stages
are available and the Tbs corresponding to the surface emission is used here, where all other
Tb contributions are removed with the help of auxiliary data and radiative transfer modeling.
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The SMAP sensor benefits from an advanced Radio Frequence Interference (RFI) detector,
and RFl-affected Tb are not considered.

SMOS provides multi-angular and full-polarization observations at L-band (1.4 GHz) since
2009, using a Y shaped interferometric instrument, with a spatial resolution from 35 to 50 km
depending on the incidence angle (Kerr et al., 2010). The SMOS data are collected from the
Center Aval de Traitement des Données SMOS (CATDS). The L3C product includes V and H
polarization Tbs, projected onto the ground and binned into 14 fixed angle classes of 5°, from
2.5 to 62.5° (Al Bitar et al., 2017). SMOS data affected by RFI are filtered out as much as
possible (Uranga et al., 2022), using a threshold (0.4) on the flag provided by the CATDS.

3.2.2. The geophysical parameters

ERAS5 reanalysis combines model outputs with multiple observations (in situ as well as
satellites) into a globally complete and consistent data set, using physics laws (Hersbach et
al., 2020). The data are projected onto a 0.25° regular grid in longitude and latitude. It is
acquired through the Copernicus climate data store
(https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis-era5-single-
levels?tab=overview).

The coincident hourly ERA5 parameters are collected, for each satellite swath data, possibly
interpolated in space and time.

Some key additional information is not available from ERA5 and will be sourced externally,
such as the Above Ground Biomass or the dynamic of the surface water extent. Note that the
selected sources for these parameters are well established and broadly used by the
community.

3.2.3. Practical consideration

Data are collected over one year. For the robustness of the parameterization and for
practicality, the initial satellite-derived emissivities (at swath level) are projected onto a fixed
grid of 12.5km and a 10-day compositing is performed by averaging for each cell (and angle
bin for SMOS). This time compositing reduces the noise observed in the instantaneous
emissivities and it is compatible with the monthly averaging often used in other studies (for
each month, averaging over days 1-10, 11-20, and for the rest of the month). It is important to
ensure that the database is thoroughly cleaned to create a reliable and robust forward model.
Climatological emissivity records at 10-day resolution are computed based on the emissivity
database for each instrument, from the averaging of all the estimated emissivities over the
corresponding 10-day per year (per frequency, polarization, and possibly angle bin).

3.3. Parameterization methodology
3.3.1. Joint analysis of geophysical parameters and microwave emissivities

Before any attempt to parameterize the emissivities as a function of geophysical parameters,
it is very important to carefully analyze the statistics of the training dataset and to analyze the
relationship between the emissivities and the potential predictors. This step determines the
accuracy of the forward model and its robustness.

First, the probability density functions of the emissivities and the geophysical parameters will
be checked, to eliminate potential outliers as well as possible artefacts. Filters will be applied
if necessary (related to clouds, to RFI for the emissivities).

Second, the time and space behaviors of the emissivities and geophysical parameters will be
analyzed, with Hovmoller graphs for instance, for relevant transects. This will improve our
understanding of the possible relationship between the emissivities and the predictors.

Third, the correlation between the emissivities and the geophysical parameters will be
calculated, in terms of space and time, using correlation matrix, scatter plots, and / or
correlation maps.


https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis%E2%80%90era5%E2%80%90single%E2%80%90levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis%E2%80%90era5%E2%80%90single%E2%80%90levels?tab=overview
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From these analyses, a set of predictors will be selected, driven by a solid physical
understanding of the emissivity sensitivity. The snow-covered surfaces and the snow-free
surfaces will be treated separately.

3.3.2. Statistical model for emissivity forward operator

This study relies on statistical models to establish links between geophysical parameters and
emissivities. As highlighted in the joint analysis of emissivities and geophysical parameters,
numerous geophysical parameters influence the microwave signal in a highly intricate manner,
both spatially and temporally. Neural networks are particularly well-suited for this task, as they
can effectively capture complex, non-linear relationships between variables. Neural networks
have already been widely applied to regression problems in remote sensing and have recently
demonstrated success in forward ocean emissivity modelling (Kilic et al., 2023). In this study,
a compact Multi-Layer Perceptron (MLP) (Rosenblatt, 1961) is utilized, featuring only one
hidden layer with a reasonable number of neurons that will depend on the predictor number.
This type of neural network can be quickly trained and inferred on standard Central Processing
Units (CPUs). Various configurations were tested (different number of layers and/or neurons),
and the results indicate that the architecture of the MLP does not significantly alter the
outcomes. The network is trained using a Bayesian regularization back-propagation algorithm,
which ensures robust performance and reduces the probability of overfitting by constraining
the weights of the NN (MacKay, 1992; Foresee and Hagan, 1997).

A separate neural network is trained for each frequency. To ensure a consistent relationship
between the V and H polarizations, a single NN is employed to predict both simultaneously.
This approach enforces coherence between the two polarizations while maintaining flexibility
across different frequencies.

The data from the last ten days of each month of the initial one-year dataset of collocated
geophysical predictors and satellite-derived emissivities are isolated to train the statistical
model. The emissivity parameterization is then evaluated on the original data set, excluding
the data used to train the NNs. Two major metrics assess the quality of the parameterization:
the linear correlation coefficient R, the coefficient of determination R2 and the Root Mean
Square Error (RMSE) calculated from the difference between the parameterized value and
the target. Note that the systematic error (or bias) is expected to be 0 over the dataset, by
construction of the NNs, and as a consequence, RMSE is very close to the Standard Deviation
(StD) of the error. The probability distribution function of the parameterized and initial
emissivities are also compared. Maps are shown and more detailed temporal analysis are
conducted at local scale. The NN results are systematically and directly compared to the 10-
day emissivity climatology. Here, we want to test the performance of the geophysically-based
emissivity parameterization, as compared to a climatology derived from satellite-derived
emissivity. The expectation is that a parameterization derived from geophysical variables at
the time of the observations provides a better estimate than a climatology that is not linked to
current surface conditions.

3.4.The snow surfaces
3.4.1. Preparation of the data specifically for the snow-covered land

A full winter season is considered, in the Northern Hemisphere (continental snow-covered
extent in the Southern Hemisphere is limited). Data are collected from the beginning of
October 2018 to the end of May 2019. Greenland and permanent glaciers are treated
separately, as ERA5 snow information is not available in these areas. Microwave emissivities
are very sensitive to the presence of open ocean, and data within 80 km of the coast are
removed to avoid any contamination. A spatial and temporal interpolation is performed to
collocate the geophysical parameters with the satellite-derived emissivities at swath level.
Data over 10 days are aggregated onto the same Equal-Area Scalable Earth (EASE) grid 2.0
over the Northern Hemisphere at 12.5 km (Lambert’s equal-area, azimuthal) (Brodzik et al.,

10
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2012). As already mentioned, the analysis is limited to clear-sky emissivities (with ERA5 total
liquid water path < 0.05 kg m—2). Data are kept only if the Snow Depth is above 0.02 m

3.4.2. The predictor selection

Figure 1 and Figure 2 present examples of satellite-derived emissivities over snow-covered
regions, along with the collocated geophysical parameters, for two contrasting periods, in the
middle (1-10th January 2019) and at the end (1-10th April 2019) of the winter season. The
spatial and temporal variability of the snow emissivity is observed, depending on frequency,
polarization, and time of the year. As expected, the snow emissivity at a given frequency is
systematically higher in the vertical polarization than in the horizontal polarization. For a given
location and season, the snow emissivity tends to decrease with increasing frequency. North
of Canada and Siberia, the snow emissivity significantly drops from January to April,
evidencing stronger volume scattering likely due to an increase in the snow grain sizes: the
higher the frequency, the larger the emissivity decrease. The decreasing of the emissivity can
also be linked to a deeper snowpack leading to more volume scattering.

SMOS 1.4 GHz V 52.5° SMOS 1.4 GHz H 52.5° SMOS 1.4 GHz V 52.5° SMOS 1.4 GHz H 62.5°
o B b | B | B
R o . R 1*{ e & &\
m . -Qw a. y Ius )\\ > & f Ina A - Ios W : los
A ) : ) g - !
- 08 08 08
AMSR2 6.9 GHz V 55° AMSR2 6.9 GHz H 55° AMSR2 6.9 GHz V 55 AMSR2 6.9 GHz H 55°
G sa]. L aelr], RS il |, e |
" 1 . P o R ! , X ' g
. 08 e - 08 - ) 08 08
e o > | 7
08 06 08 06
AMSR2 18.7 GHz V 55° AMSR2 18.7 GHz H 55° AMSR2 18.7 GHz V 55° AMSR2 18.7 GHz H 55
500 . s .
A | B . = % LB % < # I! y al | B
ﬁ + b ' jos Row e 08 R ™ : ¥ 08 \ X = 08
gl | ‘ Sl | - | 4
086 08 06 06
AMSR2 36.5 GHz V 65 AMSR2 36.5 GHz H 66° AMSR2 36.5 GHz V 65 AMSR2 36.5 GHz H 55°
B . 1 LB P v e B
& t‘#*w*‘ : : ! L " B
" 5 s o Ioa s Y e Ioe ™ s - 3 Ion A - Ioa
. 06 = 1 06 ——d 06 06
AMSR2 89.0 GHz V 55° AMSR2 89.0 GHz H 55° AMSR2 89.0 GHz V 55 AMSR2 89.0 GHz H 55°
e S | e p I et . sl peigd A, |
o 2 . Ios ~ » e e Ioe Mgs? = Ios . - Ioe
i 086 = - 08 . - » iz 06 ' - 06
a) 1-10th January 2019 b) 1-10th April 2019

Figure 1: Average satellite-derived emissivity over ten days for selected frequencies (at 1:30
pm for AMSR2, 6:00 am for SMOS). Only snow-covered regions are presented (Snow Depth>
0.02 m).
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Figure 2: Examples of average geophysical parameters over ten days at 1:30 pm. Only snow-
covered regions are presented (Snow Depth> 0.02 m). The two red lines on the map of Std of
Orography of the beginning of April 2019 indicate the transect studied later in the document.

Figure 3 presents the correlation matrix between the geophysical parameters and the
emissivities at different frequencies for two contrasting periods in the boreal winter (January
February, and April May), over the snow-covered Northern Hemisphere (excluding Greenland,
as already mentioned). During mid-winter, low-frequency emissivities exhibit strong

11
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intercorrelation while the 36.5 and 89.0 GHz bands behave distinctly. In contrast, during the
melting period, correlations among low frequencies weaken, and those among 18.7, 36.5, and
89.0 GHz strengthen. As winter progresses, snow metamorphism increases grain size (Sturm
and Benson, 1997), enhancing volume scattering and lowering emissivity, even at lower
frequencies later in the season. For instance, the 18.7 GHz channel transitions from low-
frequency behavior in January to high-frequency characteristics by April. Correlations between
snow parameters and emissivities show that Snow Depth and Snow Water Equivalent are less
correlated with emissivities than Snow Density and Albedo. Linear relationships between
microwave signals and Snow Depth or Snow Water Equivalent (SWE) often fail across large
spatial or seasonal scales (Cordisco et al., 2006; Rosenfeld and Grody, 2000; Grippa et al.,
2004). Spatio-temporal correlation coefficients indicate that Show Depth and SWE have weak
spatial correlations but may show stronger local temporal correlations with emissivities,
consistent with Derksen et al. (2010), who estimated SWE from 37 GHz brightness
temperature histories.
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Figure 3: Linear correlation between geophysical parameters and emissivities for both mid-
winter (bottom left) and melting period (top right). AGB stands for Above Ground Biomass;
Snow Water Eq. for Snow Water Equivalent.

Hovmoller diagrams (Figure 4) along 110°W (latitude 40°-70°N) reveal a steady increase in
Snow Density through winter, a key factor in snow dielectric properties (Wiesmann and
Matzler, 1999). However, correlations between Snow Density and emissivities above 36.5
GHz remain limited, while low-frequency emissivities show mid-winter anticorrelation with
Snow Density. Although dry snow is generally transparent at low frequencies, Schwank et al.
(2015) showed it still affects emissivity through snow-air interface effects. ERA5 provides bulk
Snow Density, though actual density varies within the snowpack; new low-density layers can
influence high-frequency emissivities (>100 GHz) (Sandells et al., 2024). The temperature
gradient between the surface and ground (Figure 3) is anticorrelated with low-frequency
emissivities but positively correlated with higher frequencies, especially in spring. This reflects
both (1) the low-frequency sensitivity to ground temperature via penetration, and (2) the
gradient’s control on snow metamorphism, which enhances scattering and reduces high-
frequency emissivity (Josberger and Mognard, 2002). Vegetation, represented by Above
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Ground Biomass (AGB), shows strong, frequency-increasing correlations with emissivities
during winter (Figure 3), particularly for H-polarization. Since vegetation has high emissivity
and weak polarization contrast (Prigent and Jimenez, 2021), it becomes dominant where snow
emissivity is low (Derksen, 2008). Figure 4 further shows that regions with AGB > 50 Mg ha™
(north of 53°N) correspond to elevated emissivities at 18.7 and 36.5 GHz. Terrain relief also
enhances emissivities, especially in H-polarization, and reduces polarization differences
(Prigent et al., 1997; Matzler and Standley, 2000). This is evident near 41°N and 45°N, where
orographic variability is high. Finally, emissivity features linked to water bodies are prominent
near 54.5°N (small lakes), 59°N (Athabasca Lake), and 68°N (the Arctic gulf). These regions
exhibit low emissivities at 6.9 and 18.7 GHz (H-pol). During mid-winter, frozen or snow-
covered lakes show scattering at frequencies above 18.7 GHz and high polarization
differences, indicative of residual liquid water early in the season. The gulf near 68°N becomes
sea ice-covered after November, producing a sharp emissivity increase. Incorporating detailed
lake and water-body information is therefore essential for accurate emissivity parameterization

and spatial variability representation.
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b) Microwave emissivities for the vertical and horizontal polarizations, as well as for the
polarization difference (V-H).

Figure 4: Hovmoéller diagrams at 110°W, from 40°N to 70°N (red line over Canada seen in Fig
2), for both geophysical variables (a), and emissivities (b) from October 2018 to end of May
2019). Variables without seasonal variations are represented by transect. Only snow-covered
areas are represented, for only some of the studied frequencies.

3.4.3. The NN parameterization results

Following the joint analysis, a subset of geophysical variables was selected to train a neural
network-based statistical model. Individual and various combinations of input parameters were
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tested to determine their effectiveness, ultimately focusing on a specific configuration that
balanced model simplicity with the inclusion of essential geophysical details.

Table 1 presents an overview of the 10 geophysical parameters selected for this experiment,
which were chosen based on their significant relationships with passive microwave
emissivities, as identified in our initial analysis.

Geophysical parameters

Name Fixed Snow Temperature
Albedo
Lake Cover Density Snow (Tsnow)

NN 10 parameters | StD of Orography
AGB

Ground (Tground)

Depth Gradient (Tskin — Tground)

Melt

Table 1: List of geophysical parameters used as input to the emissivity parameterization over
snow-covered areas.

Climatologies of emissivities, derived from satellite time series, have been generated for each
10-day aggregation. These climatologies serve as a baseline method against which our results
(i.e., the retrieved emissivities) are systematically compared. The reason for this is that we
want to show that we can improve the current radiative transfer based on the use of
climatological emissivities. Second, these emissivity climatologies are also considered as
complementary inputs to the neural network parameterization, alongside the geophysical
parameters. This is a common approach in prediction problems, where a priori knowledge of
the variable to be predicted can be incorporated as a predictor to further constrain the
prediction problem, if this information is available. Note that our goal is not to reproduce the
climatologies, but the observed emissivities (also called target emissivities) with possible
interannual variations. The climatologies act only as a first guess to guide the NN towards the
correct emissivities.

Figure 5 presents the statistical results for the selected NN parameterizations, over the studied
snow-covered surfaces in the Northern Hemisphere, from October 2018 to May 2019. The NN
parameterization that use only geophysical parameters (yellow lines on Figure 5) achieve a
correlation coefficient (R) above ~0.8 for all frequencies and polarizations, and an RMSE
below ~0.03 for frequencies up to 18.7 GHz (both polarizations) and below 0.045 for higher
frequencies. This represents an approximate twofold reduction in error compared to using
mean emissivities for each frequency and polarization, as indicated by the ratio of 2 or more
between the RMSE and the standard deviation of the initial satellite-derived emissivities
(targets), shown in the top-right panel of Figure 5. The results consistently perform better for
V than for H polarization, as expected from the lower emissivity variability observed at V
polarization. Comparisons between the emissivity climatologies and the target emissivities
(black lines in Figure 5) reveal that emissivity climatologies outperform NN parameterization
using only geophysical inputs. Previous studies have demonstrated the effectiveness of
emissivity climatologies in capturing the spatial and temporal variability of snow signatures at
frequencies of 18.7 GHz and above (Prigent et al., 2015; Hirahara et al., 2020) on a continental
scale. Incorporating emissivity climatologies as inputs to the NN parameterization (in addition
to the geophysical parameters, green lines in Figure 5) improves the agreement with the target
emissivities. This approach treats emissivity climatologies as a priori values for the
parameterization, while the geophysical parameters add temporal variability to better
represent the current environmental state for the specific winter conditions. With these
additional climatological inputs, the correlation coefficients exceed 0.9 for all frequencies and
polarizations, and the RMSE falls below 0.02 for frequencies up to 18.7 GHz and around 0.03
for higher frequencies. Note that R at 18.7 GHz is consistently lower than at other frequencies:
this is attributed to the limited variability of emissivities at this frequency compared to higher
frequencies, alongside the influence of complex scattering mechanisms.
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Figure 5: Correlation R and Root Mean Square Error (RMSE) computed from the comparison
of retrieved emissivities and the target values. Comparison between the emissivity
climatologies and the target values is given in black. In red is given the StD of target
emissivities. The solid and dashed lines correspond to V and H polarizations, respectively.

The distributions of the retrieved emissivities (with and without climatologies) are compared to
the original emissivity distributions and their climatologies in Figure 6. These comparisons
reveal very similar behaviors across all frequencies and polarizations, even at high
frequencies where the target emissivity variability is relatively large. The same figure also
presents the distribution of emissivity errors, showing no observable biases. This represents
a significant improvement over the results of radiative transfer models reported by Hirahara et
al. (2020), which exhibited substantial biases, particularly at frequencies above 10 GHz.
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Figure 6: Top panels: Histogram of the snow-covered surfaces emissivities from the target
(red), from the climatologies (black) and from our retrievals with two configurations of inputs
(10 geophysical variables only (yellow) or along with emissivity climatologies (green)). Bottom
panels: Histograms of errors, i.e., targets emissivities minus the emissivity climatology in black
or the retrieved emissivities in the different configuration in yellow and green. The solid lines
and dashed lines represent V' and H polarizations respectively.

Finally, Figure 7 and Figure 8 present maps of the parameterized emissivities (using 10
variables with emissivity climatologies) and the differences between the target emissivities
and the outputs of our method for two distinct time periods. The parameterized emissivities
capture the large-scale spatial structures for both periods, even at high frequencies where
pronounced latitudinal gradients are observed, influenced by complex volume scattering
mechanisms. The difference maps further confirm this overall agreement, although some
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regions exhibit discrepancies, particularly at higher frequencies. For more details see de Gélis
et al, (2025).
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Figure 7: Retrieved emissivities for ascending orbits (1.30 p.m. LST for AMSR2, 6.00 a.m. for
SMOS).
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Figure 8: Maps of errors, i.e., differences between target and retrieved emissivities for
ascending orbits (1.30 p.m. LST for AMSR2, 6.00 a.m. for SMOS,).

A paper has been written on these results, and it has been published in Remote Sensing of
Environment:

3.5.The snow-free land surfaces
3.5.1. Preparation of the data specifically for the snow-free land

Observations over snow-free land surfaces are selected for the year 2018 by retaining only
those data for which the ERA5 snow depth is lower than 0.01 m. A spatial and temporal
interpolation is performed to collocate the geophysical parameters with the satellite-derived
emissivities at swath level. The resulting data are subsequently aggregated into 10-day
averages to increase robustness and are projected onto a regular global grid at 0.125°
resolution. To minimize coastal contamination, observations located within 80 km of the
coastline are discarded. In addition, only clear-sky conditions are considered in order to avoid
potential cloud-related biases. For each grid cell, emissivities are retained only when at least
five valid observations over the 10 days are available with a total cloud liquid water path (LWP)
less than 0.05 kg-m™, based on ERAS5. In cases where fewer than five observations are
available, the LWP threshold is relaxed to 0.1 kg-m™2. This adaptive filtering is introduced to
ensure sufficient data coverage particularly in tropical regions, where persistent cloudiness
often limits the number of available clear-sky measurements. Penetrating deserts are
excluded from the parameterization because the variation of emitting depth across
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frequencies is not taken into account in the emissivity computation based on skin temperature.
While this assumption is reasonable in most areas, it leads to large errors when not taken into
account in penetrating areas such as very dry sands in deserts. Note that an emissivity
parameterization for such areas is proposed in Favrichon et al. (2023). The method is based
on the analysis of diurnal time series of brightness temperature and surface skin temperatures
from ERAS over the full diurnal cycle. A simplified thermal conduction model is developed to
derive the sub-surface temperature profile, with the diurnal cycle of the ERA5S surface skin
temperatures as a boundary condition. The emissivities and emitting depths are estimated
from a minimization procedure, using radiative transfer calculations. Here, desert areas are
filtered out using the aeolian aerodynamic roughness length (z0<0.15 cm) computed from
ASCAT and PARASOL instruments (Prigent et al.,2012).

3.5.2. The predictor selection

For the predictor selection, our approach is to use, as much as possible, variables derived
directly from the ERA5 reanalysis. However, ERA5 does not provide a parameter explicitly
characterizing temporal variations in surface water extent, even though passive microwave
emissivities at frequencies between 6 and 36 GHz are strongly influenced by the presence of
surface water. To account for this effect, we therefore incorporate information from the Global
Inundation Extent from Multiple Satellites, version 2 (GIEMS-2; Prigent et al., 2020). As
GIEMS-2 is not available in near-real time, a seasonal climatology based on the period 1992—
2017 was computed for use in our analysis, consistent with the constraints of NWP
applications. In addition, we identified discontinuities in the land-sea mask provided within the
Cerise project. To more accurately represent permanent inland water bodies, we use the
Global Lakes and Wetlands Database, version 2 (GLWD-2; Lehner et al., 2025).

Figure 9 and Figure 10 illustrate examples of satellite-derived emissivities over snow-free
regions and their corresponding collocated geophysical parameters for July 2018. Unlike the
behavior observed over snow-covered areas at higher microwave frequencies (6-36 GHz),
emissivities over snow-free land surfaces remain relatively stable, particularly in the vertical
polarization. In contrast, the 1.4 GHz channel exhibits high spatial and temporal variability. For
frequencies between 6 and 36 GHz, changes in horizontal-polarization emissivity are primarily
driven by vegetation effects. Thereby, in this context, it is important to always analyze the
emissivities by considering the difference of polarization (vertical minus horizontal
emissivities), as this difference tends to approach zero in densely vegetated regions, where
above ground biomass (AGB) or leaf area index (LAIl) is high. At 1.4 GHz, the emissivity
variability is more strongly controlled by soil moisture conditions, represented here by the Soil
Water Volume (SWV). An increase in soil moisture generally reduces the emissivities.
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Figure 9: Maps of emissivities at different frequencies over snow-free lands for 1-10th July
2018. The 1.4 GHz frequency corresponds to SMAP observations while higher frequencies
are acquired using the AMSR?Z2 instrument.
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Figure 10: Maps of geophysical parameters over snow-free lands for 1-10th July 2018. SWVL
stands for Soil Water Volume Layer 1 or 2. AGB stands for Above Ground Biomass. PW is the
permanent water bodies from GLWD2. Red lines on the StD of orography maps correspond
to the transect studied in Figures 11, 12, 18, and 19.

To better illustrate the spatio-temporal variability of the emissivities in relation to key
geophysical variables, Figure 11 and Figure 12 present Hovmoller diagrams along two
selected transects. In these figures, the GIEMS-2 inundation extent for 2018 is shown as an
indicator for the presence of surface water. Figure 11 shows a transect across the Sahel region
and emphasizes the strong influence of soil water volume and leaf area index on the emissivity
signal. Although runoff from ECMWF could be used as a proxy for flood or drought conditions,
it does not appear to correlate well with the presence of surface water during the summer
period around 10°N (as indicated by the GIEMS 2018 data and the marked decrease in H-
polarized emissivities). Furthermore, the comparison between the GIEMS-2 2018 values and
the long-term GIEMS-2 climatology highlights that surface inundation was considerably more
pronounced in 2018 than in climatological conditions. This reinforces the relevance of
incorporating explicit surface water indicators into numerical weather prediction systems.

The transect shown in Figure 12, located in the southeastern United States, focuses on a
region characterized by recurrent inundations of the Mississippi River. While emissivities at
frequencies between 6 and 36 GHz remain relatively stable in most other regions, the
presence of surface water in this area leads to a pronounced decrease in emissivity. In this
case, the soil moisture indicator (Soil Water Volume) alone does not appear sufficient to
capture the spatial and temporal periods during which emissivities are reduced. For instance,
relatively high soil moisture values are found between 35°N and 38°N, whereas the
corresponding emissivities at 1.4 GHz remain comparatively high, likely due to the influence
of vegetation (as indicated by the Leaf Area Index, LAI). Once again, differences are evident
between the open surface water extent provided by the GIEMS-2 climatology (GIEMS clim.)
and that observed in 2018 (GIEMS 2018).
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Figure 11: Hovméller diagrams at 13°E, from 0°N to 20°N (red line over Mid-Africa seen in
Figure 10), for both geophysical variables (a), and emissivities (b) over the year 2018.
Variables without seasonal variations are represented by transect. Only snow-free areas are
represented, for only some of the studied frequencies.
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Figure 12: Hovmédller diagrams at 91°W, from 30°N to 45°N (red line over South-East Asia
seen in Figure 10), for both geophysical variables (a), and emissivities (b) over the year 2018.
Variables without seasonal variations are represented by transect. Only snow-free areas are
represented, for only some of the studied frequencies.

Figure 13 shows the correlation matrix computed over the full dataset, representing the spatial
and temporal correlations between emissivities at different frequencies and the various
geophysical parameters. The results highlight a strong relationship between vegetation
variables and horizontally polarized emissivities. Consistent with the Hovmdller diagrams,
surface water extents are clearly anti-correlated with emissivities. Soil moisture also shows a
pronounced negative correlation with emissivity at 1.4 GHz. At higher frequencies, however,
a positive correlation is observed in horizontal polarization, likely due to the co-occurrence of
high soil moisture and dense vegetation, as suggested by the strong correlation between LAl
and the Soil Water Volume (Layer 1). In addition, the standard deviation of orography exhibits
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a slight correlation across all frequencies. Similar to vegetation effects, surface roughness
reduces the difference between vertical and horizontal emissivities.

Altitude
StD of Orography
Above Ground Biomass — 0.8
Leaf Area Index —
Soil Water Volume L1 —
Soil Water Volume L2 —
Runoff (mean 24h) —
Total Precip. (mean 24h)
Total Column Liquid Water

ground |
skin |
PW GLWD2
Lake Cover
GIEMS climato
1.4 GHz V
1.4GHzH —
6.9 GHz V
6.9GHzH -
10.7 GHz V —
10.7 GHz H
18.7 GHz V —
18.7 GHz H
36.5GHz V -
36.5GHz H —

Figure 13: Spatio-temporal correlation matrix during the full year 2018.

To complete this analysis, Figure 14 provides density plots of LAI, soil water volume layer 1
and GIEMS climatology with emissivities. This highlights the complex relationship between
emissivities and the different geophysical parameters. Even if some correlations between
geophysical variables and emissivities were observed in the above analysis the link is not
linear.
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a) LAl versus emissivities. Note that horizontal lines around a LAl of 0.6 m2/m2 is
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b) Soil Water Volume Layer 1 (i.e., soil moisture) versus emissivities
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c) Climatology of flooded areas of GIEMS versus emissivities

Figure 14: Density plots of emissivity versus some of the geophysical variables.

3.5.3. The NN parameterization results

Following the joint analysis, a subset of geophysical variables was selected to train a neural
network-based statistical model. Table 2 presents the selected geophysical parameters
accounting for vegetation, surface water and soil moisture, and surface roughness. As for the
snow-covered areas, different configurations were experimented and we tried to balance
between model simplicity and the inclusion of essential variables. Note that AGB, permanent
water (GLWD2), and StD of Orography are fixed for a given location. The LAI available in
ERAS reanalysis is an annual climatology. Thereby only the soil moisture indicator and the
soil temperature are variables that are temporally dynamic. Note that the soil temperature is
taken in average over the past 24 hours, and it is used as a predictor of frozen ground (not

covered by snow).

Name Geophysical parameters
Vegetation Water and moisture presence Other

AGB Soil Water Volume L1 StD of Orography

NN 7 parameters GIEMS climatology .
LAL Permanent Water GLWD2 Soil Temperature L1

Table 2: Geophysical parameters selected as input to the emissivity parameterization over
snow-free lands. Parameters in bold are time-varying and include interannual variability.
Parameters underlined correspond to annual climatologies, meaning they exhibit intra-annual
but no interannual variability. All remaining parameters are fixed.

Similarly to the snow-covered surfaces, climatologies of emissivities derived from the satellite
time series were generated for each 10-day aggregation. These climatologies are used as a
reference against which the retrieved emissivities are systematically evaluated, with the
objective of demonstrating potential improvements over already existing methods that rely on
fixed climatological emissivities (such as TELSEM2). In addition, the climatological
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emissivities are also tested as complementary predictors, functioning as a first-guess input to
the neural network alongside the geophysical variables.

Quantitative results over the global testing dataset for the full year are shown in Figure 15,
from 1.4 to 36 GHz. At 1.4 GHz, results are presented using SMAP observations, since the
global SMOS coverage is reduced due to RFI filtering. Overall, in snow-free land conditions,
the climatological emissivities provide a strong baseline, as emissivities tend to be relatively
stable in time, except where surface water can occur. When the neural network is trained
without emissivity climatologies as inputs, its performance does not exceed that of the
climatological atlas. This is particularly evident at frequencies 26 GHz, where the emissivity
signal is largely controlled by vegetation and surface water. However, surface water extent is
not explicitly represented in ERAS5, and vegetation is only available in annual climatological
form. Thus, the predictors do not capture interannual variability in these key surface
characteristics, limiting the potential for improving beyond climatological emissivities at these
frequencies. In contrast, at 1.4 GHz the potential for improvement is larger. The emissivity at
this frequency is strongly modulated by soil moisture, for which time variability is represented
in the input data. As a result, the dynamic emissivity parameterization shows an added value
over a purely climatological approach at L-band.

R Standard deviation of targets
1 ‘ T - ™ | 0.06¢~——" T T T
s i o et siviinniuniiani T - — — 00— — — — _
===% * * J 0.04\ & ————
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Figure 15: Correlation R and Root Mean Square Error (RMSE) computed from the
comparison of retrieved emissivities and the target values. Comparison between the emissivity
climatologies and the target values is given in black. In red is given the StD of target
emissivities. The solid and dashed lines correspond to V and H polarizations, respectively.

Figures 16 and 17 present maps of differences at 1.4 GHz and 6.9 GHz between the target
and the resulting brightness temperatures (BT) obtained from both neural network (NN)
configurations, without and with emissivity climatologies as input, as well as those derived
using climatological emissivities alone, for two distinct periods. To facilitate comparison with
previous studies (e.g., de Rosnay et al., 2020), emissivities were multiplied by the skin
temperature to convert them back into the brightness temperature domain. In the experiment
without emissivity climatologies as NN inputs, errors generally remain within 10 K, except over
northern Canada and Siberia in July, where larger discrepancies are observed.

Concerning the experiment including emissivity climatologies as inputs to the NN (Figure 16
et 17 b), together with the seven geophysical parameters, or when using the climatologies
alone (Figure 16 and 17c), the differences at higher frequencies remain comparable to those
at 6.9 GHz, or even smaller (typically below 3 K). At 1.4 GHz, however, localized larger errors
are observed, particularly in January over the eastern United States near the snow boundary.
In this region, the parameterized BTs clearly outperform the climatological estimates, as the
inclusion of soil moisture provides valuable information in areas with strong interannual
variability. Some residual errors are also found along the Mississippi River, even at 6.9 GHz,
although the parameterized BTs still show slightly improved performance. As shown in Figure
12, comparison with the GIEMS surface water data in early January indicates that surface
water extent in 2018 was lower than in the corresponding GIEMS climatology. The absence
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of near-real-time surface water information likely limits the model’s ability to reproduce the
observed BT and emissivity signatures associated with flooding events. In such areas, only
soil moisture is available as a time varying input variable; however, as illustrated in Figure 12,
soil moisture and open surface water are not redundant and each provides distinct information
necessary for accurately predicting BTs. Similar discrepancies observed over the Parana
Basin in South America and across parts of India in July can be explained by the same
limitations.

1.4 GHz V
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-10

10 10

-10 -10

i
ﬂ

a) Difference between target and retrieved BT (NN 7 parameters)

1.4 GHzV

-10

10

-10

b) Difference between target and retrieved BT (NN 7 parameters + emissivity
climatologies as input)
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Figure 16: Maps of errors for the 1-10th of January 2018, i.e., differences between target and
retrieved brightness temperatures with the NN based on 7 geophysical parameters as input
(a), or retrieved brightness temperatures with the NN based on 7 geophysical parameters and
emissivity climatologies as input (b) or climatologies directly (c).
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Figure 17: Maps of errors for the 1-10th of July 2018, i.e., differences between target and
retrieved brightness temperatures with the NN based on 7 geophysical parameters as input
(a), or retrieved brigthness temperatures with the NN based on 7 geophysical parameters and
emissivity climatologies as input (b) or climatologies directly (c).

To complement this analysis, a more localized comparison is provided through the Hovmaéller
diagrams shown in Figures 18 and 19. In Figure 18 (at 1.4 GHz), the improvement of the
parameterized emissivities (Fig. 18b) over the climatological values (Fig. 18c) is clearly visible.
At higher frequencies, the climatological emissivities already provide very accurate results,
and the advantage of the dynamic emissivity parameterization becomes less apparent. Figure
19 highlights that the largest errors occur in regions subject to potential flooding, for example
along the Mississippi River between 32°N and 36°N, and in May between 39°N and 42°N. In
other parts of the Hovmaller diagrams, the results appear consistent and accurate, confirming
the robustness of the parameterized approach under stable surface conditions.
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Figure 18: Hovmédller diagrams at 25°N, from O°E to 40°E (red line over Europe seen in Figure
10), for both differences between target and retrieved emissivities (a and b), or emissivity
climatologies (c) over the year 2018.

SMAP 1.4 GHz V
Dec-18 :.;.“‘_.‘_ = - <k
Aug-18+ % TEaRe
May-18 """Q‘,r’ ik
Feb-18" T ‘
38 40 42 44
Latitude (°N)
AMSR2 6.9 GHz V
Dec-18] B i il EC— 3
d
May-18 - —“"——6' ;:g#;; = e
w- ®m S
32 34 36 38 40 42 44
Latitude (°N)
AMSR2 18.7 GHz V
Dec-18f i1 s y i
Y. l
May-18 - b e i
32 34 36- 38 40 42 44
Latitude (°N)
AMSR2 36.5 GHz V
Dec-18 iy STl s ' -
E ol =l
May-18 . r'n.. e
3% 84 36 38 40 42 44

a)

Latitude (°N)

005 pec-18

May-18
-0.05

005 pec-18

May-18 |

-0.05

0.05

May-18 -

-0.05

005 pec-18

May-18
-0.05

Dec-18f

SMAP 1.4 GHz H
5 38 . 40 42 44
Latitude (°N)
AMSRZ 6.9 GHz H
Wy
. e — i 0 |
o
B e
32 34 36 38 40 42 44
Latitude (°N)
AMSR2 18.7 GHz H
T PN
{ 5555 2 b :;‘ﬁ' i | - |
,9 e — )
32 34 36 38 40 42 44
Latitude (°N)
AMSR2 36.5 GHz H
" x!‘nf |
s T
& “'in: 1
38 40 42 4‘4

Latitude (°N)

Difference between target and retrieved emissivities (NN 7 params.)

0.05

-0.05

0.05

-0.05

0.05

-0.05

0.05

-0.05

30



CERISE

SMAP 1.4 GHz V_

SMAP 1.4 GHz H
: R 0.05

Dm-18Wﬁ. S 0.05 pec-18 m ——
pug-16- - T . i g 2 f.ﬁ..- e ]
el amr TSy Mate - o
Feb-181  ieadbeomrs | ow il | (. I, N | Py
32 34 36 38 40 42 44 ’ 32 34 36 38 40 42 44 ’
Latitude (°N) Latitude (°N)
AMSR2 6.9 GHz V o AMSR2 6.9 GHz H BitE
Dec-18F — B Dec-18f — ——— m
May—18‘~ i % May-ts! i -—— |0
i e~ . . -0.05 e = ! -0.05
32 34 36 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
AMSR2 18.7 GHz V AMSR2 18.7 GHz H
Dec-18| i s ; = 0.05 pec-18 e ‘ =  m 0.05
May-18‘ i 1 Uo May-18 e S ‘DO
peey e i -
— : ‘ : -0.05 —— — W.0.05
32 34 3 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
AMSR2 36.5 GHz V AMSR2 36.5 GHz H
Dec_w‘, e ‘ - m0.05 pec-18 e ‘ - 1 m 0.05
May-18| e el O May-18 e o 0
‘ SOV i, s
‘ i : : : : -0.05 —S— : -0.05
32 34 36 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
b) Difference between target and retrieved emissivities (NN 7 params. + climato.)
SMAP 1.4 GHz V 01k SMAP 1.4 GHz H bick
Dec_18*xm T F ‘-‘.‘* = £ ‘;‘_ I - Dec_18 !m T o TF = - o
Aug-18f L — -
May—18;' R e % May-18 B &
Feb-18+ el SR, . -0.05 -0.05
32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
AMSR2 6.9 GHz V AMSR2 6.9 GHz H
Dec-187 T R ————] e
May-18 — % May-1s! — e
‘ ot — ~ % — ‘
s m— = . . -0.05 bfingestn, == ! -0.05
32 34 36 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
AMSR2 18.7 GHz V AMSR2 18.7 GHz H
Dec-18| S —— y - ‘@005 Dpec-18 L i e 0.05
May-18 - | — 1 U 0 May-18 W 1 D 8
i — ==
—— : ‘ : -0.05 - : -0.05
32 34 36 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
AMSR2 36.5 GHz V AMSR2 36.5 GHz H
Dec-18 e e UO-OS Dec-18 ———— .- DO'OS
0 . = 0
May-18 B — 1 May-18 T i W :
i— . . . . -0.05 = - -0.05
32 34 36 38 40 42 44 32 34 36 38 40 42 44
Latitude (°N) Latitude (°N)
c) Difference between target and emissivity climatologies

Figure 19: Hovmodller diagrams at 91°W, from 30°N to 45°N (red line over South-East US
seen in Figure 10), for both differences between target and retrieved emissivities (a and b), or
climatologies (c) over the year 2018. Corresponding geophysical variables and target
emissivities are provided in Figure 12.

31



CERISE

3.6.Conclusion

Satellite-derived microwave emissivities were computed from AMSR2, SMAP, and SMOS
observations over several years by removing atmospheric contributions and surface
temperature effects using geophysical fields from the ERA5 reanalysis. The relationships
between these satellite-derived emissivities and the relevant environmental parameters were
then analyzed in order to identify the most informative predictors for the emissivity
parameterization. Based on this analysis, a large training database of coincident emissivities
and geophysical parameters was assembled to develop a neural-network (NN) emissivity
parameterization capable of providing robust emissivity estimates at continental scale.
Existing physical models are generally unsuitable for this purpose, as they rely on detailed
ground or snow properties that can only be obtained through in situ measurements. While
emissivity climatologies offer reliable baseline estimates, they do not capture the actual
instantaneous state of the surface. The proposed approach therefore links globally available
geophysical properties with robust satellite-derived emissivities through neural networks.

In both the snow-covered and snow-free contexts, the results show that including emissivity
climatologies as inputs, in addition to the geophysical parameters, helps guide the network
toward more accurate emissivity estimates. Over snow-covered surfaces, most of the global
geophysical variables available are only weakly related to snow emissivity and carry
substantial uncertainties, which explains the need to provide emissivity climatologies as part
of the input. In this configuration, the correlation coefficient R exceeds 0.9 for all studied
frequencies and both polarizations, with RMSE values below 0.02 for frequencies up to 18.7
GHz and around 0.03 for 36.5 and 89.0 GHz, and no significant bias.

Over snow-free land surfaces, the NN results obtained without emissivity climatologies as
input are already very accurate from 6.9 GHz upward, with RMSE values below 0.02 in
horizontal polarization and around 0.012 in vertical polarization. Including emissivity
climatologies further improves the performance: global metrics show RMSE values below 0.01
for both polarizations at all frequencies between 6.9 GHz and 36.5 GHz. It is important to note
that climatologies alone, i.e., without any dynamic emissivity parameterization, already provide
highly accurate estimates. Although small local improvements can be observed when using
the dynamic parameterization, no major enhancement is expected for two main reasons. First,
because of the inherently low temporal variability of emissivities at these frequencies,
climatological values are already very reliable. Second, the geophysical inputs that drive
emissivity variability at such frequencies (notably open surface water and vegetation structure)
are not represented in ERA5S in a form suitable for capturing day-to-day changes. Open
surface water is absent, and vegetation information (via LAIl) is provided only as an annual
climatology. As a consequence, the NN does not have access to the near-real-time surface
descriptors needed to imprint meaningful sub-seasonal variability onto the emissivity
estimates, limiting the potential improvement over climatological atlases.

At 1.4 GHz, emissivity variability over snow-free areas is larger. At this frequency, the RMSE
of the experiment without any contribution from the emissivity climatology is around 0.032 and
0.022 for horizontal and vertical polarizations, respectively. When emissivity climatologies are
included as inputs, the RMSE decreases to below 0.02 for both polarizations. Here, the benefit
of the dynamic emissivity parameterization over the climatology alone is more substantial
because the key geophysical driver of emissivity at 1.4 GHz, soil moisture, exhibits real
temporal variability in ERAS, enabling the NN to capture day-to-day changes in surface
conditions.

The codes developed for the emissivity parameterization are available, and constitute the
foundation for the two forthcoming fast surface emissivity models (SURFEM) dedicated to land
and snow surfaces, which will complement the existing SURFEM-Ocean model (Kilic et al.,
2023). The description of the codes is given in Annex | (Section 6).

Note that a similar methodology has been developed to parameterize the sea ice emissivity.
However, as ERAS or the IFS has very limited information on the sea ice (only its fractional
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coverage at that point), outputs from the sea ice model neXtSIM have been adopted as
predictors for the model of Kilic et al (2025).

4. ML-based observation operator for use in a regional coupled
assimilation system

4.1 Background

Passive microwave observations contain a wealth of information of the land surface, e.g. soll
temperature and moisture content. This information could be explored in land surface
modelling to correct for model deficiencies, like missing precipitation. To explore these
observations in land surface data assimilation we would need a mapping from the land surface
state to the satellite observations. This is done with forward models or observation operators.
Physical forward models could be limited by parameterizations and errors in auxiliary data. In
the microwave range of the electromagnetic spectrum surface sensitive channels have large
footprints e.g. 40 km around L-band (1.4GHz). Limited area models (LAMs) and regional
reanalysis are operating at a resolution of 2.5 km or even finer. To address this representativity
problem we suggest training a graph neural network that takes into account the sub-footprint
heterogeneity of the land surface model.

In this report we present the developments done for the regional machine learning observation
operator, the text is based on a manuscript in preparation for publication by Blyverket et. al
2025.

4.2 Data and methods
4.2.1 Land surface model and forcing data

The SURFEX land surface modelling framework (Masson et al., 2013), is used to create the
features in the training database. The land surface model is set up with two patches,
representing low and high vegetation, respectively. For the soil we use the ISBA model
(Noilhan and Mahfouf, 1996). More specific for the soil we use ISBA-DF scheme (Decharme
et al.,2011), which models 1D water diffusion in the soil column and Fourier's law for heat
transport. The soil is discretized into 14 layers with the same layering as in Albergel et al.
(2017). For the high vegetation patch we use the explicit canopy option (MEB) (Boone et al.,
2017; Napoly et al., 2017).

For the snow we use the ISBA explicit snow scheme (ISBA-ES) which is a multi-layer snow
scheme (here 12 layers) (Decharme et al., 2016). It solves for 5 prognostic state variables;
snow water equivalent, snow heat content, density, age and albedo.

To drive the land surface model we use forcing from i) the MET Nordic analysis, available on
thredds (https://thredds.met.no/thredds/catalog.html) and the CARRA (Schyberg H. et al.,
2021) regional reanalysis. The CARRA data are fetched from MARS and converted to forcing
files that can be utilized by SURFEX through the pysurfex framework. We use 2m temperature
and humidity, 10m wind-speed, wind direction, incoming longwave radiation, and diffuse and
direct incoming shortwave radiation. The ISBA model is run in an open-loop mode, which
means that no data assimilation is applied. The forcing is bilinearly interpolated to the SURFEX
grid and the model interpolates the hourly forcing values to the 10 minute timestep.

4.2.2 Satellite observations

In our analysis we use observations from the AMSR2 sensor. This instrument sits onboard the
GCOM-W1 Japan Aerospace Exploration Agency (JAXA) satellite. It measures passive
microwaves in vertical and horizontal polarization at the following frequencies: 6.925, 7.3,
10.65, 18.7, 23.8, 36.5 and 89.0 GHz. The satellite swath width is 1450 km with an incidence
angle of 55°. It follows a polar orbit with overpasses at 1:30 am and 1:30 pm local time. In our
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study we focus on frequencies that are sensitive to land surface variables, especially soil
temperature and water content, and the snow state. We therefore use 10.65, 18.7 and the
36.5 GHz channel. We use level 1 data from JAXA, it contains swath data with locations and
spatial resolution ranging from ~7 to ~40 km depending on frequency, see Table 3 for details.
We will refer to the different channels as 10GHz, 18GHz and 36GHz from now.

Table 3: AMSR2 frequencies in this study and their characteristics. Grid points within a node
are related to the machine learning observation operator and will be explained later.

Frequency 10.7 GHz 18.7 GHz 36.5 GHz
Footprint (km) 42 x 24 22 x 14 12x7
Grid points within a 80 25 4
node

4.2.3 Sensitivity analysis

We want to build a forward model that could be applied for data assimilation for both snow
covered and snow free surfaces. To explore which variables are related to the AMSR2
observations for the different seasons we perform a sensitivity analysis. Here we look into how
the ISBA land surface variables (LSVs) correlate with the AMSR2 observations. We split the
analysis into a winter case December, January and February (DJF), which is the snow
accumulation season and a snow melt season in March, April and May (MAM), where the
snow is melting and contains liquid water. Finally, we consider a summer period June, July
and August (JJA), where we expect that the AMSR2 observations are sensitive to surface soil
moisture and temperature. We compute spatio-temporally aggregated correlation values
between the ISBA LSVs and AMSR2 observations at different frequencies. We also compute
temporal correlations in observation space, where we have gridded the LSVs within an
AMSR?2 footprint and report the correlations on a map.
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Figure 20: Correlation heatmap between ISBA LSVs and AMSR2 18GHz V and H-polarization
(top) and 10GHz V and H-polarization (bottom). The time-period is March, April and May 2018

(left) and June, July and August (right).

Figure 20 shows aggregated statistics in time and space between the ISBA LSVs and AMSR2
18GHz (top) and 10GHz (bottom) for MAM (left) and JJA (right). For both 18 GHz and 10GHz
we note the positive correlation between surface soil moisture (WG1 and 2) for the MAM
period. This is contradicting the microwave theory which has the inverse relationship. The
expected negative correlation is seen for the JJA period. We also see that there is a negative
correlation between snow depth/SWE and brightness temperature (Tb); this is higher for the
18GHz channel than the 10GHz channel.

We also see a high negative correlation between soil ice (WGI) and Tb, also more pronounced
for 18GHz during MAM than for 10GHz. Finally, we note that there is a strong positive
correlation between soil temperature variables and Tb.

Temporal correlations for the 18 GHz channel are shown in Fig 21. Top panels show the
correlation between snow depth and Tb for DJF (left) and MAM (right). We see that in the
snow accumulation phase this correlation is negative in large parts of the domain, however at
the Kola peninsula it is positive. For the MAM case the relationship is stronger (R=-0.6), and
more homogeneous, except for sampling noise in the northern part of the domain. Regions
with strong topography and glaciers are filtered out in this figure. Leaf area index (LAIl) and
soil temperature layer 1 correlations with Tb for JJA are plotted in the bottom panel. Here we
see a positive correlation for both variables and it is particularly strong for soil temperature.
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Figure 21: Temporal correlation between snow depth (DSN_T _ISBA) and 18.7 GHz V-pol,
top left) and top right) for DJF and MAM, respectively. lower left) temporal correlation between
LAl and 18.7 GHz V-pol for JJA and lower right) temporal correlation between soil temperature
layer 1 and 18.7 GHz V-pol for JJA.

4.2.4 Forward modelling of passive microwave observations

In this section we present the forward modelling of passive microwave observations. We
describe the different machine learning algorithms that were tested and the physics-based
Community Microwave Emission Model (CMEM).

Machine learning forward operators

We investigated different flavours of machine learning algorithms, each with their own
strengths and weaknesses. Here we briefly describe the different algorithms and their
implementation.

First, we tested the XGBoost (eXtreme Gradient Boosting) algorithm, this model is based on
decision trees that are updated in the training phase. In this model each grid point was
considered a separate sample and there was no spatial context supplied to the model i.e., it
is not able to explicitly represent the AMSR2 footprint. Our XGBoost is trained separately for
different target variables.
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Second, we implemented a footprint CNN (convolutional neural network) Yamashita, R. et al.
(2018). It was developed for patches of 5 x 5 grid points. Thus it is able to learn spatial features
within the patches. Here we make one prediction for each patch (the target is the mean
observed value in a patch).

Third, we implemented a Residual U-net, here a CNN is developed for the full domain, and it
is able to learn spatial features at different spatial scales (here 6 ranging from 7.5 to 240 km).
It creates one prediction for each grid point and the model predicts all target variables. The
downside with this model is that it is domain dependent.

Fourth we developed a graph neural network (GNN). In the GNN each graph has a set of
nodes. Each node corresponds to an AMSR2 observation. Within the footprint area each node
has a selected number of features, e.g. the ISBA LSVs grid points, see Fig 22. The area of
the footprint is frequency dependent, thus is also the number of features for each frequency,
see Fig. 20. We utilize a static number of grid points for each individual frequency, hence the
GNN is said to be a static-GNN. The number of grid points for each frequency is listed in Table
3. We also tested a GNN where the number of nodes within the swath was allowed to vary.
This is because the observations at the edge of a swath have a larger footprint than the
observations close to the center, hence the number of ISBA grid points within a footprint is
larger at the edge than at the center of the swath. This dynamic (varying nodes) was tested
and found to give better results than the static-GNN (not shown). The computational cost of
training the static-GNN was lower than for the dynamic-GNN and summary scores did not
suffer too much when keeping the number of nodes static. The static-GNN is evaluated
separately in Sec. 3.1.1.

Table 4: Model settings for the different machine learning algorithms tested in this work.

Model Model or | Training time | Training Validation
obs space period period
XGBoost Model 40 min 01-09-2020 to 01-09-2022 to 01-
01-05-2022 06-2023
footprint Model 2 hours 01-09-2020 to 01-09-2022 to 01-
CNN 01-05-2022 06-2023
Residual U- | Model 8 hours 01-09-2020 to 01-09-2022 to 01-
Net 01-05-2022 06-2023
static-GNN Observation | 24 hours for 01-09-2020 to 01-09-2022 to 01-
18GHz channel | 01-05-2022 06-2023

In Table 4 we show characteristics of the different machine learning algorithms. They all use
the same training and validation dataset, however the training time differs from 40 min
(XGBoost) to 24 hours (static-GNN).

The sensitivity analysis performed in Sec. 2.3 guides the selection of feature variables for the
observation operator. The final set of variables are listed in Table 5.
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Figure 22: lllustration of the dynamic/static graph neural network approach. AMSRZ2 footprint
in yellow and the corresponding ISBA LSV grid points selected for that node.

Table 5: List of ISBA LSV variables that we use in the static-GNN.

Geophysical parameters

Static Snow Soil Vegetation
ZS Depth Temperature LAI

Patch fraction Density Moisture -
Fraction of land and | SWE Ice -
sea

Distance to footprint | Liquid water - -
center

- Heat content - -

- Temperature - -

Implementation in Harmonie-Arome

The static-GNN is implemented in both the offline reanalysis system (CARRA-Land-Pv2) and
in the coupled regional demonstrator (CARRA3-Pv1). For both systems the static-GNN is
trained on one year of open-loop data covering the pan-Arctic domain (spinup for CARRA-
Land-Pv2). For training we utilize the 20 last days of the month (for every month) as training
dataset and the first 10 days (of every month) for validation.

Figure 23 shows the setup in the coupled system, here the MakeObsOpData task takes the
FA (native Harmonie-Arome filetype) input and converts ISBA LSVs and observations into a
graph for the static-GNN, which is then run for each ensemble member in the sfc_obsOp task.
The LETKF (see D1.3) is extended to assimilate AMSR2 Tb in 10.7, 18.7 and 36.5 GHz V and
H-pol.
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Figure 23: Ecflow graphics of the static-GNN implemented in Harmonie-Arome. The
MakeObsOpData task takes the FA (native Harmonie-Arome filetype) input and converts
SURFEX variables and observations into a graph for the static-GNN which is then run for each
ensemble member in the sfc_obsOp task

Community microwave emission model (CMEM)

The Community Microwave Emission Model (CMEM) is developed and maintained by
ECMWE. It is a forward operator for low frequency microwave observations, see de Rosnay
et al. (2019). CMEM has a modular structure for computing the microwave emission
contributions from soil, vegetation, snow and the atmosphere. The code is designed to be
highly modular and for each microwave modeling component, a choice of several
parameterizations is considered, see
https://confluence.ecmwf.int/display/LDAS/CMEM+Documentation. We use CMEM as a
baseline to evaluate the static-GNN for the 10GHz channel. To ensure a fair comparison
between CMEM and the static-GNN we run CMEM on graph level, i.e., for each node we
compute the footprint average value of the ISBA LSV inputs. In this way we run CMEM in
“‘observation” space as we do for the static-GNN. For the different module and
parameterization options we follow Hirahara et. al (2020) as close as possible. The selected
options are listed in Table 6.

Table 6: List of parameterizations utilized in CMEM

CMEM module Parameterization
Soil dielectric mixing Dobson

Effective temperature Chodhury

Soil roughness Wegmuller

Vegetation optical depth Wegmuller

Vegetation temperature Dual

Vegetation dielectric mixing | Matzler
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Vegetation dielectric mixing | Not frozen
(cold)
Snow emission model HUT single layer
Soil volumetric moisture Input ISBA LSVs
Atmospheric emission Ulaby
model

4.3 Results

In this section we present an evaluation of the different machine learning algorithms, a closer
look at the dynamic vs static-GNN and a comparison of the static-GNN vs CMEM.

4.3.1 Evaluation of the different machine learning algorithms

To allow for rapid prototyping and testing of different machine learning algorithms we chose a
relatively small domain covering southern parts of Norway and western Sweden, see Fig. 24.
The topography in this domain ranges from steep mountains to flat forested and agricultural
areas. It also has a strong seasonal cycle with a domain average number of days with snow
cover larger than 0.5 reaching 106.3 during the whole training/validation period.

In Fig. 25 we plot predicted brightness temperature at 36.5 GHz V-pol at 18-03-2023 for
XGBoost, footprint CNN (with stride 5), footprint CNN (with stride 1), Residual U-Net and the
observed brightness temperature. We see that topography (and most likely snow cover and
frozen land) are strong predictors of AMSR2 brightness temperature. We also note that the
Residual U-Net is capturing the high brightness temperature close to the Norwegian/Swedish
border. The Residual U-Net’s ability to learn spatial features at different spatial scales also
improves the qualitative match between the prediction and the observation, in particular when
compared to XGBoost which only has information at the grid point scale.

Number of days with snow fraction > 0.5
20220901 - 20230531

Surface elevation

Mean: 106.3 ‘ g
- -

0 30 60 90 120 150 180 210 240 270
Number of days

Figure 24: lllustration of domain characteristics for the dataset used in training the machine
learning observation operators. (Left) Surface elevation in meters, (right) number of days with
snow fraction > 0.5 in the dataset.

A more comprehensive analysis is shown in Fig. 26, where we plot the domain averaged mean
absolute error (MAE) for channel 18.7 GHz V-pol for the whole validation period and for
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different seasons, SON, DJF and MAM. Overall, the XGBoost (blue) has a larger MAE than
the more complex methods, with the Residual U-Net showing the smallest MAE throughout
the time-period. When we look more closely at the different seasons we see that the errors
are smallest during fall (SON) and increasing into DJF (most likely because of snow
accumulation). Here the differences between the models are smaller and towards the melting
season (MAM) they overlap to a larger extent. The errors are also fluctuating more, this could

be because of freeze/melt cycles in the snow pack during spring.

tb36_v 18-03-2023
XGBoost Footprint CNN stride 5 Footprint CNN stride 1 Residual UNet Observed brightness temperature
3 TR : Y . . e v > = ' o Ty

212.00 217.96 223.92 229.88 235.84 241.80 247.76 253.72 259.68 265.64
Brightness temperature (K)

Figure 25: Comparison of predicted brightness temperature at 36.5 GHz V-pol at 18-03-

2023 for XGBoost, footprint CNN (with stride 5), footprint CNN (with stride 1), Residual U-
Net and the observed brightness temperature.
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Figure 26: Domain average mean absolute error (MAE) for channel 18.7 GHz V-pol, for the
different machine learning algorithms and seasons. XGBoost (blue), footprint CNN with stride
5 (red), footprint CNN with stride 1 (grey) and the Residual U-Net (green). Shown are the
whole period of September 2022 to May 2023 (top left) and 3-month windows SON (top right),
DJF (bottom left) and MAM (bottom right).

Figure 27 shows the spatial distribution of the errors. For 18GHz V-pol (top) we see that
increased model complexity reduces the domain mean MAE. Smallest MAE are seen in flat
regions with fewer days with snow cover (Sweden), but also in northern regions of south
Norway and along the southern coast of Norway. In general the MAE is larger for the 36GHz
V-pol (bottom). One plausible explanation for this could be the lack of atmospheric predictors
in our feature list.
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Figure 27: Time averaged mean absolute error (MAE) for the different machine learning
algorithms. Top 18.7 GHz V-pol and bottom 36.7 GHz V-pol.

For the 36GHz channel the smaller MAE are seen along the coast of south Norway and in the
flat agricultural dominated regions of Sweden (compared to more forest to the north). Errors
are particularly large inland in south Norway, without any clear explanation from topography
or number of snow covered days (e.g. not glacier).
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Figure 28: Pearson correlation coefficient for the different machine learning algorithms. Top
18.7 GHz V-pol and bottom 36.7 GHz V-pol.

Maps of temporal correlation, Fig. 28, show that there are small differences between the more
complex models, and that the XGBoost has a much smaller correlation than the other models.
Red regions in western Norway (with low correlation) are regions with permanent snow
(glaciers), especially Jostedalsbreen and Folgefonna. A reason for the lower correlation in
these regions could be because the land surface model does not represent the glacier as ice
with snow on top, but as a very deep snowpack. The feature variables of the model are
therefore not able to capture the variability of the observed brightness temperature.

4.3.2 Dynamic vs static graph neural network

As described above we developed two flavours of the GNN, one dynamic (with varying number
of grid points for each node) and one static (with static number of grid points for each node).
While the dynamic-GNN is an attractive approach, as it is able to take into account the varying
spatial footprint of the AMSR2 instrument within a swath (larger closer to the edge vs at nadir),
it was found to be computationally expensive. Figures 29 and 30 show bias, MAE, root-mean-
squared-error (RMSE) and correlation for the dynamic and static-GNN, respectively. Overall
the largest differences in scores are seen for bias.
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Figure 29: Bias, MAE, RMSE and correlation for the dynamic graph neural network, top 18.7
GHz H-pol and bottom 18.7 GHz V-pol.

v5
20220901 - 20230531

Bias BT18.7H Mean absolute error BT18.7H Root mean square error BT18.7H Pearson correlation BT18.7H
N At o o o B® S N o NERS
. sl N i o v : i O ~;ia!'\. . 7B N
. B .8 . ;:u ’ar
A * %7
4 1 A\ R 9

Mean: 1'47,ﬂ . Mean: 5.91‘ s - Mean: 7.44‘ Mean: 0.83-,’ .
e — e ——— e —
-4 -2 0 2 4 0 2 4 6 8 10 0 2 4 6 8 10 00 02 04 06 08 1.0
Brightness temperature (K) Brightness temperature (K) Brightness temperature (K) Correlation coefficient

Bias BT18.7V Mean absolute error BT18.7V  Root mean square error BT18.7V  Pearson correlation BT18.7V

Bl & . - " = Tay e o
¥ » - s -
\ >
o % N 3
&,4,&[/'?}5
o -
% -
-4 -2 0 2 4 0 2 -+ 6 8 10 0 2 4 6 8 10 00 02 04 06 08 1.0

Brightness temperature (K) Brightness temperature (K) Brightness temperature (K) Correlation coefficient

Figure 30: Bias, MAE, RMSE and correlation for the static graph neural network, top 18.7
GHz H-pol and bottom 18.7 GHz V-pol.
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4.3.3 Training and evaluation of the static-GNN over the CARRA East domain

We further evaluate the static-GNN by training it over the CARRA East domain. This is a larger
domain situated in the European Arctic. We use the same training strategy as outlined in Sec
2.4.2. A comparison is made between the static-GNN and CMEM for an independent
validation dataset covering 4th June 2018 until 14th August 2018. We compute mean bias and
MAE for this time-period in observation space. By construction the ML-methods should have
a long-term zero bias. This is seen for the static-GNN, although with some large positive bias
in the northern parts of the domain (most likely because of few observations). Bias in CMEM
is larger, and there is usually a need for a priori bias correction when utilizing physics based
models as forward operator. Looking into the MAE (Fig. 31 right), we see that the static-GNN
has a lower domain average MAE ~5.25 K vs ~7.76 for CMEM. The static-GNN shows
particularly low MAE for inland mainland Norway.

Bias, Ch: Tb 10.7V, mean=0.49 ) MAE, Ch: Tb 10.7V, mean=5.25

- 10

time-period 04-06-2018 to 14-08-2018. (Top right) Mean absolute error (MAE) for the same
time-period. (Bottom left) same as top left but for CMEM, (bottom right) as top right but for
CMEM.
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4.4 Conclusion

In this Section we have described the implementation and testing of different machine learning
algorithms for usage in both the offline and coupled reanalysis systems. We developed a static
graph neural network (static-GNN) that was able to account for the spatial heterogeneity of
the land surface model within a satellite footprint. Preliminary analysis shows that the static-
GNN model is able to outperform the physics-based CMEM which is promising for use in land
data assimilation. The next step will be to evaluate the static-GNN for usage in an ensemble
data assimilation system.

5. ML-based observation operator for hydrological applications

In this report we present the development of a machine-learning-based observation operator
for assimilation of passive microwave data using data from AMSR2 sensor, land surface
variables and a gradient boosting regressor method.

5.1 Data and Methods

A dataset consisting of AMSR2 brightness temperatures, Tb, at daily time step  and 10 km
spatial resolution was compiled for the period 2019-2023 (Japan Aerospace Exploration
Agency, 2012) for northern Sweden. The study area covers 154,700 km?, extending from the
mountains along the border with Norway to the Baltic Sea (Figure 32). The mean elevation is
418 meters above sea level, and the landscape is predominantly characterized by forests and
open lands. The area includes the basins of two major rivers in northern Sweden, the
Umealven and the Tornalven rivers.

The semi-distributed hydrological HYPE model (Lindstrom et al., 2010) was used to generate
the land surface variables. The model was set up on a grid of 0.05x0.05 degrees to create an
interface with satellite products. To consider the influence of the surface data sub-grid
variability, we considered their values associated with the different land cover classes within
the AMRS2 pixels. We selected surface variables including snow depth, snow temperature
and liquid water content, frost depth, soil moisture and  upper soil layer temperature (Table
7). In addition, we considered the static variables of land cover fractions and spatial
coordinates as input features (Table 7). The four-year dataset was temporally split into training
(2019-2021) and testing (2022-2023) sets.
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Figure 32: The map of the study area in northern Sweden with the main land cover types

Table 7: List of the variables, target, and input features used for the development of the
observational operator.

\Variable Acronym
Target Brightness temperature Th
Input features Snow depth sdep

Snow surface temperature Tss

Snow liquid water content Iwcs

Frost depth fdep

Soil moisture fraction smf

Upper soil / lake temperature Tusoil, Tlake

Land cover fractions Fract

Xcoor, Ycoord xcoord, ycoord

We trained an eXtreme Gradient Boosting Regression (XGBoost) with the time-series of
surface variables and the static land cover fractions and spatial coordinates to predict Tb at
18GHz. The eXtreme gradient Boosting Regressor was selected for the capabilities in
modelling complex non-linear relationships and variable interactions. Boosting is an ensemble
method that constructs ensemble members sequentially. Here, the ensemble members are
decision trees that iteratively split the input features to predict the target variable. In boosting,
the splits are modified in each iteration to put more emphasis on the data points for which the
model so far has performed poorly. The algorithm minimizes the loss function by finding the
direction in which the loss function decreases the fastest (Lindholm et al., 2022).
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The optimal parameters were found using the GridSearchCV cross-validation technique with
a step-wise approach, minimizing the mean squared error score function. The mean absolute
error (mae) and the root mean squared error (rmse) between observed and predicted Tb were
calculated pixel-wise over the whole spatial domain to evaluate the model performance over
the year and at the seasonal time scale in winter (November-March) and summer (June-
August) of 2022-2023.

5.2 Results
5.2.1 Data exploration

We calculated Pearson's correlations between the brightness temperature data and the input
features for the whole datasets (Figure 33). The highest negative correlations were found
between brightness temperature (Tb) and snow depth of the forest open and lake classes.
The highest positive correlations were found between brightness temperature (Tb) and the
upper soil temperature of the forest (Tusoil) and the water temperature of the lake classes (Tl).
Some collinearities were found among the input features such as forest fraction with open
fraction and forest soil moisture fraction or lake temperature and upper soil temperature of the
forest class. However, the gradient boosting regression algorithm shows small sensitivity to
collinearity and all the features were considered.

T 1.00

Fract f- [}
sdep_f - ||
fdep_f - 3]
smf f- [} ]
Tss f - B
lwes_f -
Tusoil_f -l -. e
fracto- |l ] il
sdep_o -
fdep_o i .. -0.25
smf o - S
T55_0 - [ |
Iwcs_o - [ | -0.00
Tusoil_o - ] [ ]
Fract_w - ]
sdep vl L --0.25
fdep_w - ] ||
smf_w - BE B
Tss_w - 1 [ ]
lwes_w - Ol o - —0.50
Tusoil_w - ] || [
Fract_| - [ |
sdep_| - [ ] -0.75
T [ ]

xcoord - B
1

0.75

ycoord - [

- -—1.00

/

0 0 0.0 & & & @ W g D74
Q84579 7N 75 1R 1R 14576 7D 7 LR
SR PSSEFETELLPE

Figure 33: Pearson’s correlation matrix of the target (Tb) and the 11 input features (Table 7)
for each land cover class, forest (f), open (o), wetlands (w) and lake (I) calculated over the
entire dataset.
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5.2.2 Model evaluation

The evaluation of the model showed that it generally captured the Tb spatial variability well
(Figure 34). The mean absolute error averaged around 4 K over the year, 5 K in winter and 3
Kin summer (Figure 34).  High error occurred in a few pixels along the coast during winter,
where the observed brightness temperatures are significantly lower than those in neighboring
areas and are likely affected by the sea microwave emissions. The largest differences were
observed in winter in the inland forested areas, whereas a better agreement between
observations and predictions was found in the mountainous region above the tree line. This
result could be due to a winter snow season in the testing dataset that differs significantly from
that in the training dataset or due to a limitation of the HYPE model in capturing the snow
dynamics in forested areas. The smallest differences were found in summer across the whole
domain. The root mean squared error was slightly higher than the mean absolute error, but it
showed similar  spatial patterns.

Next steps include analyzing the impact of each surface variable on Tb predictions to
understand the spatial differences in the ML-based observation operator performance we
observed. The Python-based observation operator will be further implemented in the HYPE
model data assimilation module using libraries for Fortran-Python interoperability. Assimilation
of AMSR2 brightness temperatures using the operator will be tested and evaluated as part of
the Arctic-HYPE pan-arctic hydrological re-analysis during 2026.
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Figure 34: Map with the observed (tb), predicted brightness temperature (tb pred) at 18GHz,
mean absolute error (mae) and root mean squared error (rmse) between observed and
predicted tb for annual (upper), winter (middle) and ~ summer (lower) 2022-2023 period
in northern Sweden.
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6. Conclusion and next steps

The ML-based observation operators to estimate microwave emissivities, for both global and
regional land data assimilation systems, have been developed using innovative methods and
with the most advanced training data available. They have been thoroughly evaluated and
compared to existing baseline models based on climatologies and physics-based models. The
initial results suggest that the ML-based models are able to outperform the existing models.
Their quality and limitations are thoroughly illustrated to help their forthcoming use in
assimilation or other contexts.

The next steps are to test the models in land and coupled data assimilation experiments in the
IFS and HARMONIE-AROME. Since many developments have been conducted in this work
package, perspectives are numerous. In particular, some ideas could be used to reconcile the
advantages of regional models (specialization over a particular domain with specificities) and
a global approach (able to be used easily in the assimilation scheme). Other perspectives
could be the estimation of the uncertainties of the model (a feature that is available in TELSEM
climatology).

7. Annex |: Codes for the ML-based observation operator for use in
a global coupled assimilation system

7.1.The code: SURFEM-Snow

The forward model for continental snow package is mainly composed of two MATLAB scripts
and a folder containing resources for the modeling.

1) forward_model_continental_snow.m: This is the main script of the proposed forward model.
This script implements the emissivity retrieval for continental snow.

2) test_forward_model_snow.m: This script provides examples on how to run the precedent
script, and tests with different configurations.

3) Resources_snow: This folder contains necessary resources to run forward_model
continental_snow.m. In particular, climatologies of emissivity are used in the process to
retrieve emissivity whether for the dynamic emissivity computation or directly for permanent
glacier (e.g., Greenland or Antarctica) where geophysical parameters required for a dynamic
computation are not available. These climatologies are provided in Resources_snow folder. It
also contains flags to indicate where permanent glaciers are. Finally, it includes the Above
Ground Biomass coming from the European Space Agency (ESA) Climate Change Initiative
(CClI) averaged over 2018 and 2019 (Santoro et al., 2023).

7.2.The code: SURFEM-Land

The forward model for land package is mainly composed of two MATLAB scripts and a folder
containing resources for the modeling.

1) forward_model_land.m: This is the main script of the proposed forward model. This script
implements the emissivity retrieval for land not covered with snow.

2) test_forward_land.m: This script provides examples on how to run the precedent script, and
tests with different configurations.

3) Resources_land: This folder contains necessary resources to run forward_model_ land.m.
In particular, climatologies of emissivity are used in the process to retrieve emissivity. These
climatologies are provided in Resources_land folder. Finally, it includes the Above Ground
Biomass coming from the European Space Agency (ESA) Climate Change Initiative (CCl)
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averaged over 2018 and 2019 (Santoro et al., 2023), the permanent water from GLWD-v2
(Lehner et al., 2025) and the climatology of open surface water presence computed from
GIEMS-2 (Prigent et al., 2020).
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