
CopERnIcus climate change Service Evolution 

 

 

 

D7.4 Time varying Lake cover, Land 
cover and LAI and extension of 

CONFESS vegetation data back to 
1925 datasets 

 
Due date of deliverable 30.04.2025 

Submission date 30.05.2025 

File Name CERISE-D7-4-V1.0 

Work Package /Task WP7 

Organisation Responsible of 
Deliverable 

Barcelona Supercomputing Center (BSC) 

Author name(s) 
Etienne Tourigny, Amirpasha Mozaffari, Vinayak 
Huggannavar, Iria Ayan, ,Margarita Choulga,  
Souhail Boussetta, David Fairbairn  

Revision number 1.0 

Status Issued 

Dissemination Level Public (PU) 

 

 

 

 

The CERISE  project (grant agreement No 101082139) is funded by the 
European Union.  
Views and opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or the 
Commission. Neither the European Union nor the granting authority can 
be held responsible for them. 



 

CERISE  
 

2 
 

Table of Contents 

1 Introduction .................................................................................................................... 3 

1.1 Background............................................................................................................. 4 

1.2 Scope of this deliverable ......................................................................................... 4 

1.2.1 Objectives of this deliverables ............................................................................ 4 

1.2.2 Work performed in this deliverable ..................................................................... 4 

1.2.3 Deviations and countermeasures ....................................................................... 6 

1.2.4 Reference Documents ....................................................................................... 6 

1.2.5 CERISE Project Partners: .................................................................................. 7 

2 Methodology .................................................................................................................. 8 

2.1 Time-varying land cover .......................................................................................... 8 

2.1.1 Datasets ............................................................................................................ 8 

2.1.2 Pre-processing .................................................................................................. 8 

2.1.3 Processing ......................................................................................................... 9 

2.1.4 Post-processing ............................................................................................... 12 

2.1.5 Blending lake cover and land cover ................................................................. 13 

2.1.6 Computational codes ....................................................................................... 13 

2.2 Time-varying leaf area index ................................................................................. 14 

2.2.1 Datasets .......................................................................................................... 14 

2.2.2 Pre-processing ................................................................................................ 15 

2.2.3 Processing ....................................................................................................... 16 

2.2.4 Post - processing ............................................................................................. 18 

2.2.5 Infrastructure ................................................................................................... 18 

2.2.6 Code ................................................................................................................ 18 

2.3 Time-varying lake cover ........................................................................................ 19 

2.3.1 Datasets .......................................................................................................... 19 

2.3.2 Processing ....................................................................................................... 23 

3 Results ......................................................................................................................... 29 

3.1 Land Cover ........................................................................................................... 29 

3.1.1 Timeseries of land use states and transition rates ........................................... 29 

3.1.2 Spatial maps of different periods ...................................................................... 33 

3.2 LAI ........................................................................................................................ 35 

3.3 Lake Cover ........................................................................................................... 39 

3.3.1 Direct evaluation .............................................................................................. 43 

3.3.2 Indirect evaluation ............................................................................................ 51 

4 Conclusion ................................................................................................................... 53 

4.1 Land cover ............................................................................................................ 53 

4.2 LAI ........................................................................................................................ 54 

4.3 Lake cover ............................................................................................................ 55 



 

CERISE  
 

3 
 

 

1 Introduction 

The CERISE project has outlined requirements for the boundary conditions of ecLand, the 
land surface component of the ECMWF Integrated Forecasting System (IFS), which will be 
used for generating the second CERISE high-resolution land reanalysis prototype (ERA6-
land-Pv2) from the present back to the year 1925. This prototype relies on the generation of 
high-resolution monthly varying lake cover, and time-varying dataset of land cover and LAI 
(Leaf Area Index). This report presents the CERISE time varying vegetation and lake datasets.  

Many reanalysis systems have historically relied on fixed or climatological land‐cover 
representations – for example, ERA5‐Land prescribes a single, seasonally averaged 

vegetation cycle throughout its entire archival period (Muñoz‐Sabater et al., 2021). However, 
recent advances now allow the use of time‐varying surface inputs: ESA’s (European Space 
Agency) CCI (Climate Change Initiative) Land Cover project delivers annual, 300 m global 
maps of discrete land‐cover types from 1992 to the present (Li et al., 2018), while the LUH2 
(Land Use Harmonization 2) database provides 0.25° grids of fractional land‐use states and 
transitions extending back to 850 CE (Chini et al., 2021). Despite their complementary 
strengths, these datasets differ in spatial resolution, categorical schemes, and temporal 
extent, limiting their direct use in next‐generation reanalysis, carbon‐cycle and hydrological 
models that demand consistent, high‐resolution land‐cover forcing. Building on recent efforts 

to reconcile multi‐source land‐surface information, we apply a state‐of‐the‐art harmonization 
framework to merge LUH2 fractional trajectories with ESA CCI’s discrete classes, producing 
an annual, 1 km‐resolution time series of land‐cover maps aligned to the CCI classification 
system. This harmonized product fills a critical gap in both spatial detail and temporal 
continuity, enabling more realistic simulations of land–atmosphere interactions and better 
attribution of terrestrial change over the past millennium. 
 
Lakes modify the structure of the atmospheric boundary layer. They can have a significant 
impact on local climate (over 1°K difference in 2-meter temperature (Samuelsson et al., 2010) 
and on local weather (up to 10°K difference in 2-meter temperature (see Eerola et al., 2014)). 
At the European Centre for Medium-Range Weather Forecasts (ECMWF), lake 
parametrization was introduced in 2015. Inland water bodies (i.e. lakes, reservoirs, rivers and 
coastal waters) are simulated by the Fresh-water Lake model Flake. The IFS model is used 
for global weather forecast production from medium to seasonal range, and for reanalysis (e.g. 
ERA5) generation. It has been shown in previous studies that monthly varying lake mask has 
a significant positive impact on regions with prolonged rain and dry seasons, for example in 
Malaysia, Indonesia and Papua New Guinea (Kimpson et al., 2023).However, the current lake 
mask used in IFS is still constant over time and represents permanent water over the 34-year 
period (i.e. 1984-2018).  

The LAI is one of the most critical variables governing land-atmosphere exchange (Fang et 
al., 2019). Physically, LAI controls how the land surface partitions energy and water, through 
plant transpiration via root extraction of soil moisture, and evaporation of intercepted rain. It 
also controls interception of sunlight, therefore altering the albedo and surface heating 
(Boussetta et al., 2015). Thus, a realistic and dynamic LAI is expected to improve the 
prediction of temperature and relative humidity, especially in extreme events such as 
heatwaves and droughts (Duveiller et al., 2022). In addition, a time-varying LAI is expected to 
enhance climate predictability at multiple scales (Alessandri et al., 2017).    

Together, time-varying land cover, lake cover, and LAI provide a more realistic representation 
of land surface processes, which is essential for improving the accuracy of climate reanalysis 
and forecasts across temporal and spatial scales. 
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1.1 Background 

The scope of CERISE is to enhance the quality of the Copernicus Climate Change Service 
(C3S) reanalysis and seasonal forecast portfolio, with a focus on land-atmosphere coupling. 
It will support the evolution of C3S, over the project’s four-year timescale and beyond, by 
improving the C3S climate reanalysis and the seasonal prediction systems and products 
towards enhanced integrity and coherence of the C3S Earth system Essential Climate 
Variables. CERISE will develop new and innovative ensemble-based coupled land-
atmosphere data assimilation approaches and land surface initialisation techniques to pave 
the way for the next generations of the C3S reanalysis and seasonal prediction systems.  
These developments will be combined with innovative work on observation operator 
developments integrating Artificial Intelligence (AI) to ensure optimal data fusion fully 
integrated in coupled assimilation systems. They will drastically enhance the exploitation of 
past, current, and future Earth system observations over land surfaces, including from the 
Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions, 
moving towards an all-sky and all-surface approach. For example, land observations can 
simultaneously improve the representation and prediction of land and atmosphere and provide 
additional benefits through the coupling feedback mechanisms. Using an ensemble-based 
approach will improve uncertainty estimates over land and lowest atmospheric levels.  By 
improving coupled land-atmosphere assimilation methods, land surface evolution, and 
satellite data exploitation, R&I inputs from CERISE will improve the representation of long-
term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.  In 
addition, CERISE will provide the proof of concept to demonstrate the feasibility of the 
integration of the developed approaches in the core C3S (operational Service), with the 
delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and 
seasonal prediction demonstrator datasets (demonstrated in relevant environment).  CERISE 
will improve the quality and consistency of the C3S reanalysis systems and of the components 
of the seasonal prediction multi-system, directly addressing the evolving user needs for 
improved and more consistent C3S Earth system products. 

 

1.2 Scope of this deliverable 

1.2.1 Objectives of this deliverables 

The objective of this is to document the methodology and results of the three datasets 
developed in CERISE for: 

● Time-varying Land Cover  
● Time-varying Leaf Area Index (LAI) 
● Time-varying lake cover   

 

1.2.2 Work performed in this deliverable 

In this deliverable the work outlined in The Description of Action reads as such: 

“Task 7.3: Create and assess a consistent extension of CONFESS vegetation data back to 
1925 at nominal 1km resolution for reanalysis.” 

“Create and assess time-varying Land Cover dataset (CERISE-LC) from 1993 back to 1925: 
CCI-LC product will be remapped to 1km resolution by modal aggregation and an established 
methodology will be used to extend it back to 1925 using LUH2 historical land-use data (Hurtt 
et al., 2020) and time-varying lake cover from T7.4. An evaluation of the dataset will be 
performed with existing regional land cover classifications based on high-resolution satellite 
imagery before 1993.” 
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The CERISE framework ensures spatial and temporal consistency between land use/land 
cover (LULC) and lake datasets by applying harmonized methodologies across both products. 
All datasets are generated at a nominal 1 km horizontal resolution and cover the historical 
period from 1925 to 2021, enabling seamless integration into reanalysis and modeling 
workflows. For LULC, the CERISE-LC dataset is derived by remapping the ESA CCI-LC 
product to 1 km resolution using modal aggregation. The time series is extended back to 1925 
using a transition-based approach informed by LUH2 historical land-use data (Hurtt et al., 
2020). This method preserves consistency in land-use dynamics while ensuring continuity in 
land cover classification over time. Additionally, the reconstruction incorporates time-varying 
lake cover information from Task 7.4 to ensure inland water bodies are treated consistently 
across all land cover classes. Some key points achieved in this task are as follows: 

● LUH2 and ESA-CCI land-use datasets were harmonized to a common spatial 
resolution and unified land-use classification using a crosswalk table (CwT). 
 

● The modeling framework operates on LUH2 subgrids, each representing 
approximately 28 × 28 block of ESA-CCI grid cells. 
 

● Annual land-use transitions were simulated using gross transition values from LUH2. 
 

● LUH2 transitions were reclassified to match the decided CwT to generate  
harmonized land-use classes before application. 
 

● A 6 × 6 transition matrix was constructed for each subgrid and year, representing 
transitions among six key land-use classes: forest, shrubland, cropland, pasture, 
urban, and barren. 
 

● Transitions were initially assigned randomly within each land-use mask.The final 
implementation uses controlled random assignment, adaptable to simulation needs. 
 

● Inconsistencies were identified in pasture transitions due to mismatches in baseline 
forest and pasture extents between LUH2 and ESA-CCI. 
 

● When insufficient pasture area was available, the model redirected pasture-to-natural 
transitions via cropland, but only after first synthesizing the required pasture area. 

“Create and assess time-varying LAI dataset (CERISE-LAI) from 1993 back to 1925: produce 
a time-varying LAI dataset based on the CONFESS-LAI product and consistent with the Land 
Cover classification above. An independent evaluation will be performed with the CONFESS-
LAI product from 1982-1993 based on AVHRR-GEOV2.” 

In CERISE, time-varying LAI datasets were created based on ML/AI models. The models were 
trained on CONFESS LAI products from the years 2000–2014 as ground truth and land use 
datasets of LUH2h and HILDA+ as inputs. To ensure the model reflects regional specifications 
and to avoid a very large model, the globe was divided into smaller regions where models 
were trained independently. Multiple models were trained, and from different configurations, a 
variation of XGBoost was chosen as the model structure. 
The trained models are used with the input data to infer the CERISE LAI datasets from the 
year 1925 to 1999, using the land use datasets as inputs to generate the datasets. The 
CERISE LAI was evaluated against the CONFESS LAI 1-km resolution and the AVHRR-GEO2 
4-km resolution for the years 1982–1999.  So some key points achieved in this task are as 
follows: 

● An ML/AI framework that successfully emulates monthly LAI values based on annual 
land use data 
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● A harmonization and evaluation framework that generates global LAI datasets based 
on the regional LAI emulator 

● A time-varying LAI dataset created from 1925 to 1999 that is compatible with 
CONFESS LAI and IFS 

The results show that model outputs were consistent with the available evaluation and 
demonstrated better harmonization than the original CONFESS LAI for the years with 
available data. Despite this, we observed that the results lack interannual variability and 
converge towards the average in each region, which leads to a reduction of LAI that affects 
areas with high LAI values (like the Amazon) quite significantly. 

“Task 7.4 Create and assess simple representations of time-variation of IFS lakes back to 
1925, for reanalysis and possibly for seasonal reforecasts.” 

“In CERISE, time-varying lake cover datasets were created based on an open, up to date, 
consistent in time high horizontal (30 m) and temporal (one month) resolution dataset from 
Joint Research Centre (JRC) Monthly Water History v1.4 (contains global surface 
classification maps from 1984 to 2021).” 

Generated lake cover maps are global, monthly per decade at 1 km horizontal resolution, and 
available for 1925-2021: 

● 1925-1961 (maps use the same 1962-1971 monthly water distribution, due to lack of 
information on anthropogenic involvement or other changes in water distribution),  

● 1962-1991 (maps use in general 1992-2001 monthly water distribution with regional 
update based on available reliable satellite information or historic records), and  

● 1992-2021 (maps are fully independent and are purely based on satellite information).  

Maps have a constant ocean assumption, i.e. all islands built after 1925 (e.g. islands near 
Dubai, UAE and Singapore) are flooded with lake water till the time they are built when they 
become land, all coastal changes due to erosion might also become covered with lake water. 

Maps were assessed:  

● directly by comparison with most reliable available yearly datasets (i.e. global and 
regional comparison with ESA CCI (300 m), Copernicus CGLS (100 m), ESA 
WorldCover (10 m)), check of seasonality with dry and rainy season climatology - 
results show good correlation for the available years,  

● indirectly by running offline open-loop (i.e. no data assimilation) IFS experiments 
(surface module was adopted to use monthly maps instead of single static map), and 
their results were compared with CCI LAKES daily satellite based skin temperature 1 
km resolution product - use of monthly lake covers show improvement over 50 
available lakes globally in BIAS and RMSE. 

1.2.3 Deviations and countermeasures 

No important deviations have been encountered. The deliverable was submitted one month 
later than planned due to delays in the production of the data for land cover and LAI. Due to 
time constraints, the land cover classification was evaluated over large regions only. 
Furthermore, the final CERISE-product is made available at monthly frequency instead of 10-
day due to memory constraints in the Machine Learning (ML) algorithm employed for its 
production. This does not have an impact given that ecLand/IFS only requires monthly data 
(centered on the middle of month) to do interpolation to daily values. 

1.2.4 Reference Documents 

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement 
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1.2.5 CERISE Project Partners: 

There are 12 project organisation partners active in the CERISE project, which are listed in 

the following table. 

Table 1: List of the active partners, with the abbreviated and full names, in the CERISE project. 

ECMWF European Centre for Medium-Range Weather Forecasts 

Met Norway Norwegian Meteorological Institute 

SMHI Swedish Meteorological and Hydrological Institute 

MF Météo-France 

DWD Deutscher Wetterdienst  

CMCC Euro-Mediterranean Center on Climate Change 

BSC Barcelona Supercomputing Centre 

DMI Danish Meteorological Institute 

Estellus Estellus 

IPMA Portuguese Institute for Sea and Atmosphere 

NILU Norwegian Institute for Air Research 

MetO Met Office 
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2 Methodology 

2.1 Time-varying land cover 

2.1.1 Datasets  

● LUH2 (Hurtt et al., 2020) provides detailed information on historical land use and land 

cover changes. LUH2 includes data on land use transitions and scenarios that are 

crucial for Earth system models, at yearly timescales (from 850-2100) and 0.25° by 

0.25° spatial resolution. In this study, LUH2 is used as one of the primary features to 

predict land cover changes at a finer resolution. The LUH2 dataset can be found at 

https://luh.umd.edu/. In this work we use the LUH2h product which covers the 850-

2014 period. 

● HILDA+ (Historical Land Use Data) (Winkler et al., 2021), which is a global dataset 

offering high-resolution (1km ) data on historical land use and land cover (1960-2019). 

HILDA+ captures long-term trends and is used in conjunction with LUH2f to improve 

the model's ability to predict historical land cover dynamics. The HILDA+ dataset is 

accessible at https://doi.pangaea.de/10.1594/PANGAEA.921846 . 

●  ESA CCI Land Cover (Lamarche et al., 2017), which provides global land cover 

classifications at a spatial resolution of 300 meters. The dataset spans the years 1992 

to 2020 and includes land cover classes such as forests, grasslands, croplands, and 

water bodies. The dataset can be accessed at 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php, and more information is available 

in the ESA CCI Land Cover Product User Guide at https://www.esa-landcover-

cci.org/?q=documents. 

 

2.1.2 Pre-processing 

2.1.2.1 Resampling and harmonization of LUH2, ESA-CCI and HILDA+ 

The Land-Use Harmonization 2 (LUH2) dataset with the native 0.25 deg resolution was directly 
used for this study without any resampling. The European Space Agency Climate Change 
Initiative (ESA-CCI) land-cover product, originally available at a native resolution of 300 
meters, was resampled to a target resolution of 1 km (~0.0089 degrees) using nearest-
neighbor resampling. Following resampling, a mask of the LUH2 grid was generated based 
on the ESA-CCI grids. This mask allowed for the selection of ESA-CCI grid cells corresponding 
to each LUH2 cell, thereby enabling direct comparison and integration of the two datasets. To 
facilitate consistent comparison between LUH2 and ESA-CCI datasets, both were reclassified 
into a common set of land-use categories. This required the development of a Crosswalk Table 
(CwT) to translate native land-use classes to a unified classification scheme (Figure 1). 

The construction of the harmonized historical land cover maps (From now on, CERISE LULC 
involved multiple iterations of permutation and evaluation, where different mappings were 
tested against the ESA-CCI CwT adapted from Winkler et al. (2020). The final version of the 
LUH2 CwT was selected based on a quantitative comparison of land-use fractions between 
LUH2 and ESA-CCI datasets, prioritizing the configuration that produced the best match in 
land-use distributions across all regions (See Figure 1). 

https://luh.umd.edu/
https://doi.pangaea.de/10.1594/PANGAEA.921846
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://www.esa-landcover-cci.org/?q=documents
https://www.esa-landcover-cci.org/?q=documents
https://www.esa-landcover-cci.org/?q=documents
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Figure 1: Chord diagrams representing crosswalk table used for reclassifying LUH2 and ESACCI to 
consistent land use data (This CwT was adapted from Winkler, K et.al. 2020). 

 

2.1.3 Processing 

2.1.3.1 LU transitions 

After harmonizing the LUH2 and ESA-CCI datasets to a consistent spatial resolution and a 
unified set of land-use categories, a custom-developed algorithm was employed to simulate 
annual land-use transitions. This algorithm operates by processing each LUH2 subgrid 
individually, each of which corresponds to a block of 28 × 28 ESA-CCI grid cells. A schematic 
representation of the overall methodology is provided in Figure 2. 

In this study, the gross land-use transition values provided by the LUH2 dataset were used to 
simulate land-use change on an annual basis. Prior to the application of transitions, the LUH2 
transition files, originally defined according to LUH2-specific land-use categories, were 
reclassified to match the common land-use types established through the crosswalk table 
(CwT) described previously. This ensured consistency between the transition information and 
the reclassified ESA-CCI and LUH2 datasets. 

Following the reclassification, a 6 × 6 land use class transition matrix was generated for each 
LUH2 subgrid and for each simulation year. This matrix captured the magnitude of gross 
transitions between the six principal land-use classes considered in this study: shrubland, 
forest, cropland, urban areas, pasture, and barren land. Each element of the transition matrix 
quantified the area transitioned from one land-use category to another within the LUH2 
subgrid. 

By default, the spatial location of land use transitions is done by random assignments within 
each mask, depending on the desired characteristics of the simulation. To ensure that 
simulated changes in land cover appeared spatially realistic, a spatial prioritization mechanism 
was added to the algorithm and tested. Specifically, this option identifies boundary cells at the 
edges of each land-use mask, and preferentially applies changes in land cover at these 
boundaries. This boundary-focused assignment of land-use transitions resulted in more 
natural-looking spatial patterns of land-use change in some cases, but in a majority of cases 
resulted in a grid-like pattern (since the assignment is predominantly done at the boundaries 
of the LUH2 gridcells), therefore this option was disabled for the final product. Alternatively, 
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the algorithm was updated to provide an option to perform random assignments within each 
mask, depending on the desired characteristics of the simulation.  

We identified the greatest inconsistencies in pasture-change simulations when the prescribed 
gross transitions could not be applied due to a dearth of available pasture area - an issue 
traced to the systematic overestimation of forest and cropland extents in the harmonized 
LUH2–ESA-CCI-LC baseline. Specifically, ESA-CI-LC has more/less Forest/Pasture 
compared to LUH2.In such cases, the model initially redirects transitions that were intended 
to convert pasture into natural land cover (such as forest or shrubland) by instead converting 
cropland into natural land cover. However, to preserve mass balance and maintain the integrity 
of transition accounting, these redirected conversions are only carried out after the algorithm 
first generates or reallocates the necessary amount of pasture area. This approach aims to 
correct the initial imbalance in transition magnitudes without introducing abrupt land-use 
changes, while ensuring consistent bookkeeping across all six land-use categories. 

 

Figure 2: Methodology flow chart illustrating the process flow followed to generate historical 
land cover maps.  

2.1.3.2 LU-LC mapping  

The algorithm then applies these land use transition values to the ESA-CCI-derived baseline 
land cover map. For the initial year, the ESA-CCI land-cover map of 1992 was utilized as the 
starting basemap. To reconstruct the land-cover state for earlier years (e.g., 1991), the 1992 
land-cover map was used in conjunction with the LUH2-specified transitions. Land-use masks 
were generated for the target year based on the ESA-CCI classification, and within each land-
use mask, the most dominant land-cover class from the corresponding 1992 data was 
identified. Grid cells within each land-use mask that lacked a definitive land-cover assignment 
were filled by assigning the dominant land cover within that mask. This method was iteratively 
applied backward in time, generating land-cover maps year-by-year, with each newly 
reconstructed map serving as the baseline for the previous year. 

In certain instances, during the land-use transition application process, the specified 
transitions from the LUH2 dataset could not be directly mapped to corresponding ESA-CCI 
grid cells. This typically occurred when the "from-class" defined in the LUH2 gross transition 
data was absent within the relevant subset of the ESA-CCI land cover grid. To address such 
inconsistencies, the algorithm incorporated a fallback mechanism designed to ensure 
continuity in land-cover assignment. 

The fallback mechanism relies on a rigorously defined lookup table that links each of the six 
principal CERISE LULC land-use categories (shrubland, forest, cropland, urban, pasture, 



 

CERISE  
 

11 
 

barren) to a single, dominant ESA-CCI land-cover class. These dominant classes were 
identified by analyzing Table 2 of the CONFESS Project Report (2021), which quantifies, for 
each ecLand land-use type, the fractional contributions of all relevant high- and low-vegetation 
ESA-CCI classes. For each land-use category, we selected the ESA-CCI class with the 
highest combined vegetation fraction i.e., the class that most closely represents the “average” 
vegetation structure of that land-use type. During the harmonization process, if the crosswalk 
table failed to yield a direct one-to-one mapping for a given cell (for instance, due to 
mismatched or missing class codes), the algorithm automatically assigns this predefined 
“representative” ESA-CCI class. 

The fallback associations between land-use classes and their corresponding dominant land-
cover classes are summarized in Table 1 below. In cases where the land-use category did not 

match any of the predefined classes, a default fallback class of 250 ("Unclassified/Other") was 

assigned to maintain data integrity. 

Table 2: Fallback Mapping Between Land-Use Classes and Land-Cover Classes (Adapted 
from Table 1 of the CONFESS report). 

Land-Use Class ID Description Fallback Land-
Cover Class ID 

Description 

1 Forest 30 Tree Cover, 
Broadleaved, 
Evergreen 

2 Cropland 90 Mosaic Vegetation 
(Cropland dominant) 

3 Urban 190 Artificial Surfaces 
and Associated 
Areas 

4 Shrubland 30 Shrubland 

5 Pasture 110 Tree Cover, 
Broadleaved, 
Deciduous, Closed 
to Open 

6 Barren 150 Sparse Vegetation 

Other — 250 Unclassified/Other 

 

2.1.3.3 Map of tiles 

To optimize the performance of the land-use harmonization algorithm, the global dataset was 
partitioned into 32 spatial tiles, enabling distributed and parallel processing on the BSC 
MareNostrum 5 (MN5) and ECMWF high-performance computing, HPC2020, systems. The 
number of tiles was empirically determined to balance the computational workload across the 
available resources, minimizing runtime while ensuring efficient memory usage and 

https://drive.google.com/file/d/1zD4fi20tbUQl8SSX-CiGLldfA6f0-aHN/view
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communication overhead. This tiling strategy facilitated scalable execution of the algorithm by 
allowing each tile to be processed independently (see Figure 3). 

On MN5, performance profiling indicated that assigning 110 parallel processes per tile yielded 
the most efficient execution profile, whereas on ECMWF hpc2020 we used full nodes of 128 
parallel processes. This configuration was found to optimally exploit the underlying CPU 
architecture and memory bandwidth of the HPC nodes. Each tile was submitted as an 
independent batch job to the SLURM job scheduler, allowing concurrent execution of multiple 
tiles and thereby significantly reducing the total processing time required for global land-cover 
simulation. 

The algorithm was explicitly developed to leverage MPI-based parallelism via the mpi4py 
interface, with a focus on minimizing I/O bottlenecks using parallel NetCDF (PnetCDF) I/O 
operations. Each tile was read, processed, and written independently into tile-specific NetCDF 
files for each simulation year, ensuring data consistency and parallel I/O efficiency. 

Upon completion of tile-wise processing, the output files were systematically mosaicked to 
reconstruct globally continuous land-cover maps for each year.  

 

Figure 3: Tiles across the globe used for parallel processing of historical time series 
landcover. 

2.1.4 Post-processing 

2.1.4.1 Stitching tiles into global grid 

To assemble global land cover maps from regionally processed tiles, the workflow begins by 
referencing a standard ESA-CCI land cover file to extract the global latitude and longitude grid. 
A new NetCDF file is initialized using this grid to store the final global outputs across all 
required years. 

Each tile corresponds to a specific region of the globe and contains land cover values stored 
in a separate NetCDF file, along with a corresponding extent file that indicates the spatial 
boundaries (row and column indices) of that tile within the global grid. The script reads these 
extents and places the land cover data from each tile into its correct spatial position within the 
global array. As a potential improvement, future work could incorporate tile buffers (e.g., a 10-
grid overlap) to enhance spatial continuity and reduce boundary artifacts between adjacent 
tiles. 

This process is repeated for all specified tiles, and for each year under consideration. Only the 
required number of years are copied from the regional files to optimize memory and runtime 
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efficiency. Once all tiles are integrated, the resulting NetCDF file represents a continuous, 
spatially complete global land cover map for each year in the simulation period. 

2.1.5 Blending lake cover and land cover 

The monthly time-varying lake cover data used in Task 7.4 may be inconsistent with the yearly-
varying land cover data from Task 7.3, due to different data sources being employed. The 
ecLand model assumes bare soil if the underlying land cover is a lake or ocean. To avoid any 
issues when the CERISE land cover assumes there is a lake, whereas there is no lake over 
the same period in the cover dataset, we apply a corrective measure. The strategy is to identify 
the points where the situation occurs (which is mainly at the borders of inland water bodies). 
We then use the ‘gdal_fillnodata’ tool with the nearest neighbor strategy (available in GDAL 
version 3.9 and above (Rouault et.al., 2025). In order to avoid propagating to the entire ocean 
bodies, we use the ESA-CCI permanent land/ocean/inner water maps to mask the ocean 
points. In Figure 4 we can see the results of filling a number of lake points for the year 2019 
of the ESA-CCI derived land cover map around the Northern portion of the Caspian Sea. 

 

  

 

Figure 4: Land cover classification based on ESA-CCI Land Cover in 2019, original data 
(left) and filled data (right). The Caspian Sea is shown here. 

 

2.1.6 Computational codes  

The LC processing code is developed entirely in-house using bash, Python and GDAL utilities, 
with a focus on high-performance and distributed computing to handle large-scale satellite 
data. The pipeline is designed to run efficiently on HPC systems by leveraging MPI for parallel 
execution. It can also be deployed on standard Linux-based clusters or cloud environments 
using the provided setup files. The codebase utilizes a set of widely adopted scientific and 
geospatial Python libraries, enabling robust, scalable data manipulation and analysis. The full 
code and related resources are maintained in the BSC GitLab repository 
(https://earth.bsc.es/gitlab/es/land-use-reclassification/-/tree/develop). 

http://et.al/
https://earth.bsc.es/gitlab/es/land-use-reclassification/-/tree/develop


 

CERISE  
 

14 
 

● mpi4py: A Python wrapper for the MPI standard, enabling distributed parallel 
processing across multiple compute nodes, critical for handling large Earth observation 
datasets efficiently. 

● xarray: Provides a powerful N-dimensional labeled array structure built on NumPy, 
tailored for working with large multi-dimensional datasets such as satellite imagery and 
climate model output. 

● netCDF4: A Python interface to the netCDF C library, used for reading, writing, and 
manipulating netCDF datasets, which are standard formats in Earth sciences. 

● NumPy: A foundational package for numerical computation in Python, enabling 
efficient array operations and data transformations. 

● SciPy: Used here mainly for ndimage.convolve, supporting multi-dimensional 

filtering operations needed for spatial data smoothing and processing. 

● pickle: Used for serializing Python objects (e.g., models, dictionaries) to disk for reuse 
across sessions or between processing stages. 

● argparse, logging, os, sys, and gc: Standard Python libraries used for argument 
parsing, logging, system operations, and memory management, respectively. 

● GDAL utilities  

2.2 Time-varying leaf area index 

Machine Learning methods were employed to extend the CONFESS LAI datasets back to 
1925 from 1999. The LUH2h and HILDA+ datasets were used as input, and the CONFESS 
LAI dataset was used as ground truth to train the model. 

 

2.2.1 Datasets  

● LUH2 as mentioned in section 2.1.1 

● HILDA+ as mentioned in section 2.1.1  

● CONFESS LAI (Boussetta & Balsamo, 2023) products from the CONFESS H2020 

project (https://confess-h2020.eu/) that provides global 10-day observation based LAI 

from 1993 to 2019. Although the project requirement for CONFESS was to generate 

LAI for the period 1993-2019, an extension back to 1982 was also made available at 

the end of the project. These LAI products provide detailed and high-resolution data 

(1km) , which are crucial for accurately modeling vegetation cover and biomass. The 

use of these products allows us to enhance the model's ability to predict LAI across 

various spatial and temporal scales. 

 

The CONFESS LAI dataset, used as ground truth for training and predicate for inference, 

comprises two segments: 1982-1999 and 2000-2014. Due to reliability concerns with the 

earlier segment over the global tropics identified in CONFESS D1.2 (Improved vegetation 

variability), only the later years were considered. As LUH2 has multiple segments, the datasets 

based on observations end in 2014, and for the years after, it uses scenarios. As we didn’t 

want to expose the model to more uncertainties in the training phase, we opted out of using 

the later years and limited the length of the training to the years  (2000-2014) , as the most 

reliable chunk of CONFESS LAI and LUH2 datasets overlapped.  

 

 

https://confess-h2020.eu/
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 LUH2 and HILDA+ served as predictors for both training and inference. The earlier years of 

the CONFESS LAI dataset (1982-1999) were reserved for comparison purposes only. 

 

2.2.2 Pre-processing  

● Downscaling of LUH2 Data: The LUH2 dataset was originally provided at a coarser 
resolution, requiring downscaling to match the grid resolution used in this study. This 
was achieved by resampling the data to the target resolution using nearest neighbour 
interpolation through gdalwarp (Rouault et al., 2025). Each subdataset (representing 
different land-use variables such as cropland, forest, and urban areas) was processed 
separately, and compression techniques were applied to optimize storage. After 
processing, all individual variables were combined into a single NetCDF file for each 
year, ensuring that the downscaled LUH2 data aligned perfectly with the common grid 
used for the other datasets. 

● Remapping of HILDA+ Data: The HILDA+ dataset, originally provided at a 1 km 
resolution, was remapped to align with the common grid used in this study. Although 
the resolution remained the same, the remapping ensured that the data was spatially 
aligned with other datasets. The remapping process was performed using gdalwarp 
(Rouault et al., 2025) with mode resampling, appropriate for categorical data. Metadata 
adjustments were made to reflect the changes, and time dimensions were added to 
enable temporal analysis. This ensured that the HILDA+ dataset was consistent and 
ready for integration into the final workflow. 

● Dynamic water-mask: A yearly binary land-sea mask, generated using HILDA+, serves 
as input. 

● An MLOps pipeline for building a global model by combining independent regional 
models involves partitioning the globe into regions (It required interpolation due to the 
different extents of the input and target data.) and creating separate Zarr (Abernathey 
et al., 2021; Zarr Development Team, 2022) stores for each region to enable efficient 
and autonomous model training. In Figure 5, global maps including all regions with LAI 
values are illustrated. Any regions without valid values are discarded and later, in the 
stitching process, replaced with NaNs. This pipeline facilitates handling large datasets 
on the accelerated partition without encountering memory constraints, while ensuring 
that each model captures the unique characteristics of its respective area. 

 

Figure 5: A global model consists of 39 independent regions of 20 °by 60 ° that covers the all 

the area that CONFESS LAI has any values.  
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2.2.3 Processing   

Three tree-based models have been considered to build the architecture of the processor in 
CERISE: Random Forest, Extreme Gradient Boosting and Recurrent Neural Network: 

 

● Random Forest (RF), an ensemble learning method from scikit-learn, was introduced 

by Breiman (2001). It enhances model robustness and accuracy by combining 

predictions from multiple decision trees. This approach effectively addresses the 

overfitting issue often encountered with individual decision trees by leveraging diversity 

in both data and feature selection. RF is a highly effective model and serves as a 

valuable baseline for comparison with other methods. However, it is not designed for 

large datasets and the sci-kit learn implementation lacks GPU acceleration support. 

● Extreme Gradient Boosting (XGB), created by Chen & Guestrin (2016), is an 

optimized gradient boosting framework designed to enhance both speed and accuracy 

in machine learning tasks. It utilizes an ensemble of decision trees, similar to Random 

Forest, but employs gradient boosting to iteratively minimize prediction errors, making 

it particularly effective for managing large datasets and capturing intricate data 

relationships. Furthermore, XGB performs exceptionally well with accelerated GPUs. 

● Recurrent Neural Networks (RNNs) process sequential data using internal loops and 

a 'hidden state' to maintain context over time (Elman, 1990). While suitable for tasks 

like NLP and time series analysis, basic RNNs struggle with vanishing/exploding 

gradients, hindering their ability to learn long-range dependencies. More advanced 

variants like Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and 

Gated Recurrent Units (GRU) (Cho et al., 2014) employ gating mechanisms to 

overcome these limitations. In this project, RNN development remained exploratory 

and did not proceed to a production implementation. Further development and 

evaluation of these models are planned for future research. 

The CONFESS LAI and LULC are used as training datasets spanning the years 2000 to 2014, 

with LAI as target and LU/LC datasets as inputs. To ensure the model's robustness and 

accuracy, a temporal split was employed, with the year 2000 designated as the testing period, 

while the subsequent years, 2001 to 2014, served as the training dataset. The input data 

incorporated into a single Zarr file that comprised the  14 LUH2h 14 fractional variables, single-

value land use data from the HILDA+ dataset,  a binary water mask, and importantly, the LAI 

values from the subsequent year. This input data structure is efficient for the model 

architecture that we have chosen and is used in an auto-regressive (AR) manner . For 

instance, when predicting LAI for the year 2000, the LAI from 2001 was used as an input 

feature. This reflects the model’s backward temporal reconstruction, where each year’s 

prediction leverages information from the following year. The integration of prior year LAI 

values was motivated by the aim to enhance the model's temporal consistency and mitigate 

potential issues such as oscillation and shifting, which could compromise the reliability of the 

model's predictions over time. 

To lessen the extreme skewness of the data (as shown in figure 6), log transformation and 

normalization to a maximum value of 7 was applied to all LAI data, including auto-regressive 

LAI. Additionally, a separate region-based water mask was created using HILDA+ water data. 

Following this, two Zarr files were produced: an input file with 27 stacked feature layers , 



 

CERISE  
 

17 
 

resulting from the concatenation of LUH2 (14 variables), HILDA (1 variable), and auto-

regressive LAI (12 variables representing the months), and a ground truth file containing 12 

layers (representing the months), one for each year and region.  

 

Figure 6:  Monthly histograms of LAI for the year 2000 (3×4 grid), binned 0–7 with relative 

frequencies summing to 1, showing low‐LAI distributions in winter, a rightward shift to peak 

canopy density in summer, and a return to lower values in autumn, averaged across in 

northern hemisphere. 

The model output is transformed back from log scale after the prediction is made and stored 

as a zarr file.  

The tree-based models, RF and XGB, performed very well in our test cases, showing a 91% 

and 89% reduction in RMS, respectively, across the areas tested. Due to a later start 

compared to the other two models, the RNN model development could not deliver a viable 

model by the deadline. Despite showing promising results and utilizing a modern PyTorch 

implementation that allows for the exploration of more advanced architectures, the RNN model 

remains experimental and will be further investigated in future work. 

The choice between RF and XGB was primarily based on XGB’s python implementation 
(https://xgboost.readthedocs.io/) ability to leverage GPU acceleration and support Dask 
(https://www.dask.org/), whereas the RF implementation in scikit-learn (https://scikit-
learn.org/stable/) does not offer these capabilities. Despite RF showing slightly better 
performance, its significantly longer training time (approximately six times longer for an 
identical test case) led us to select XGB as our preferred model. Figure 7 presents the loss 
function curves for the training and validation sets across XGB boosting rounds, along with 
the distribution of the training and testing data. 

https://xgboost.readthedocs.io/
https://www.dask.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Figure 7:   left) The log loss of the XGB for training and validation data after 2000 round of 

boosting, right) the distribution of the training and validation test data for test studies of over 

the Iberian Peninsula. 

2.2.4 Post - processing  

As all the models are trained and inferred independently, a routine was created to collect each 
year’s windows and stitch them together to produce a single prediction per month for each 
year. To achieve this, we duplicated the original CONFESS LAI NetCDF files, adopted the 
necessary metadata, and populated the duplicated files with the stitched global data. 
Additionally, to correct for the land-sea mask, we used the LSM files corresponding to the 
periods to remove any artifacts in the sea area. Finally, the validation routine was carried out 
to generate comparisons with the CONFESS LAI at both global and regional scales. 

2.2.5 Infrastructure 

The computational experiments in this work were performed on MareNostrum 5, a pre-
exascale EuroHPC supercomputer at BSC-CNS, with a peak performance of 314 PFlops. The 
system includes several partitions optimized for different workloads, notably the General-
Purpose Partition (GPP) for CPU-based processing and the Accelerated Partition (ACC) for 
GPU-accelerated tasks. This flexible architecture supports efficient execution of workflows 
combining data processing with machine learning. The GPP was used for pre-processing and 
post-processing, taking advantage of its high-core-count CPU nodes, large memory capacity, 
and fast interconnect. This configuration allowed effective data preparation and feature 
extraction, ensuring smooth handling of large datasets. The ACC partition, with nodes 
combining CPUs and Nvidia Hopper GPUs, was employed for training and inference. The 
GPU acceleration provided the necessary scalability and performance to handle intensive 
model training and prediction efficiently, reducing computation time while supporting high 
model complexity. 

  

2.2.6 Code    

The code used for the production of the LAI datasets is developed entirely in-house, primarily 
in Python and Bash, utilizing well-known Python libraries, some of which are listed below. It is 
designed to run on an HPC system due to the sheer volume of data and the need for GPU 
access. However, it can be deployed on any Linux machine (cluster or cloud) using the custom 
Conda environment provided alongside the code. The complete pipeline for both LAI and LC, 
including all processing steps, is available on the BSC GitHub repository: 
https://earth.bsc.es/gitlab/ces/ai4land_public. 

https://www.bsc.es/marenostrum/marenostrum-5
https://www.bsc.es/marenostrum/marenostrum-5
https://earth.bsc.es/gitlab/ces/ai4land_public
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● zarr: A format and library for the storage of chunked, compressed, N-dimensional 

arrays, designed for scalability in parallel and cloud-based computing environments.  

● netCDF: A self-describing, machine-independent data format and software libraries 

that support the creation, access, and sharing of array-oriented scientific data.  

● PyTorch: An open-source ML library based on the Torch library, providing GPU 

acceleration and dynamic computation graphs for building and training DL models.  

● xgboost: An optimized gradient boosting framework that is efficient, flexible, and 

portable, designed to provide parallel tree boosting for speed and performance.  

● scikit-learn: An ML library in Python offering efficient tools for classification, regression, 

clustering, dimensionality reduction, and model evaluation.  

● CUDA: A parallel computing platform and programming model developed by NVIDIA 

that enables general-purpose GPU acceleration for compute-intensive applications.  

The figure 8  illustrates how training scales with PyTorch on Nvidia H100 GPUs. 

 

Figure 8: Training time and speedup across varying batch sizes and number of workers for 

region 25, using 3 epochs over 5 years of data (4 training, 1 validation) on MN5 NVIDIA 

H100 GPU. 

2.3 Time-varying lake cover  

To develop a lake cover dataset that capture lakes seasonality and evolution in the current 
changing climate, two key elements are needed: (i) global reliable vast consistent in time and 
space high resolution datasets based on observations, and (ii) reliable reproducible flexible 
understandable automated methodology, that relies on minimum human intervention, yet 
very accurate.  

2.3.1 Datasets 

The main source to generate time-varying lake (i.e. inland water) cover is the 30 meter (1") 
horizontal resolution (grid EPSG:4326) global (except Antarctica and far North; available 
78°N-60°S) water surface dataset from the Joint Research Centre (JRC; Pekel et al., 2016). 
This dataset  was created by using Landsat 5, 7 and 8 individual full-resolution 185 sq.km 
global reference system II satellite images over the past 38 years to map the spatial and 
temporal variability of global surface water and its long-term changes. The JRC global water 
surface dataset consists of several types of maps that show different facets of surface water 
dynamics on the Earth between the 16th March 1984 and the 31st December 2021. For our 
purposes, the following maps from the most recent dataset’s version 1.4 are the best suited:  

● ‘Water Transitions’ maps show changes in water classes (no water, seasonal water, 
permanent water, etc. - 10 water classes in total) on the Earth’s surface; used to 

https://zarr.readthedocs.io/
https://zarr.readthedocs.io/
https://www.unidata.ucar.edu/software/netcdf
https://pytorch.org/
https://pytorch.org/
https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/
https://scikit-learn.org/
https://scikit-learn.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
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determine if water is present over the whole period, appeared only recently, or have 
any recurring pattern; 

● ‘Metadata’ maps show number of valid observations and number of times when water 
was observed; used to specify water class of uncertain geographical locations; 

● ‘Monthly History’ maps show the entire history of water detection on a month-by-month 
basis. The collection contains 454 images (i.e. one for each month between March 
1984 and December 2021) with water/ notWater/ noData information and used to 
generate monthly water covers and to further specify water classes based on relevant 
time periods (e.g. 2012-2021). 

Several additional sources were also used to generate the CERISE lake cover:  

● Copernicus DEM GLO-30: Global 30m Digital Elevation Model (GLO30, 
https://doi.org/10.5270/ESA-c5d3d65) has a global (except Armenia and Azerbaijan) 
90°N-90°S coverage, at 30 meter horizontal resolution  (grid EPSG:4326), and 
represents year 2015 (uses data for 01.12.2010–31.01.2015). The Copernicus DEM 
is derived from an edited Digital Surface Model named WorldDEM&trade, i.e. flattening 
of water bodies and consistent flow of rivers has been included; additional editing of 
shore- and coastlines, special features (e.g. airports, implausible terrain structures). 
The product is based on the radar satellite data acquired during the TanDEM-X 
Mission; used ‘Water Body Mask’ that shows 4 surface classes (i.e. not water, ocean, 
lake, river) to separate ocean from inland water, and ‘Elevation’ to update regional 
water body boundaries 1962-1971; 

● numerous regional glacier datasets at 15-100 meter resolution (different grids) 
representing period 1992-2020, from several sources, i.e. British Antarctic Survey, 
QUANTARCTICA, GIMP project, QGREENLAND, Norwegian Institute, Icelandic Met 
service. These datasets were used to improve water distribution over relevant regions; 

● Landsat Global Land Survey 1975 (GLS1975, courtesy of the U.S. Geological Survey) 
has a global (except where data not available) 90°N-90°S coverage, at 60 meter 
horizontal resolution (grid EPSG:32645). It represents year 1975, but it is based on 
data for 25.07.1972–20.02.1983. The Global Land Survey (GLS) 1975 is a global 
collection of imagery from the Landsat Multispectral Scanner (MSS). Most scenes were 
acquired by Landsat 1-3 in 1972-1983. Data gaps have been filled with scenes 
acquired by Landsat 4-5 in 1982-1987. These datasets were used to generate 
regionally monthly water covers 1972-1981. 

For the full list of input datasets used to produce the CERISE time-varying lake cover maps 
please see Table 3. 

 

Table 3: Full list of input datasets used for the CERISE time-varying lake cover map 
generation. 

Dataset 
[short_name] 

Description (region, resolution, period, 
format, access) 

Use & Pre-processing 

Norwegian institute 
data for Svalbard 
[Svalbard] 

Svalbard, 45m resolution, relevant for 2021, 
in shapefile format. 
Discrete glacier extent data was 
downloaded from Norwegian institute 
database - svalbard_ice 

Correcting water over Svalbard by 
removing wet glacier tops with 
svalbard_ice during Water_History data 
use. 

Icelandic 
Meteorological 
Office data for 
Iceland [Iceland] 

Iceland, 100m resolution, relevant for 2017, 
in GeoTiff format. 
Fractional glacier cover was required from 
personal communication with Bolli Palmason 
in 2019 - iceland_ice 

Correcting water over Iceland by 
removing wet glacier tops with 
iceland_ice during Water_History data 
use. 
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QGreenland 
[QGRL] 

Greenland, 30m resolution, relevant for 
2017, in GeoTiff format. 
So far is the most reliable source of lake 
location for the region (in total information for 
4528 lakes); was downloaded from 
QGreenland website - qgrl_lake 

Rasterizing Greenland lakes qgrl_lake 
for water correction. 

The Greenland Ice 
Mapping Project 
data [GIMP] 

Greenland, 15m resolution, relevant for 2002 
[1999.06.30-2002.09.04], in GeoTiff format. 
Ice cover mask is a satellite composite 
product using Landsat 7 ETM+ imagery and 
RADARSAT-1 SAR amplitude images; was 
downloaded from National Snow and Ice 
Data Center - gimp_ice (0 - not glacier ice, 1 
- glacier ice). 

Correcting water over Greenland by 
filling all inland water with land, and 
putting on top only proglacial lakes (i.e. 
lakes from qgrl_lake that do not 
intersect with gimp_ice) during 
Water_History data use. 

QuAntarctica 
[QANT] 

Antarctica, 30m resolution, relevant for 2021, 
in shapefile format. 
High quality (higher than BAS) source on 
Antarctic (and additionally more detailed for 
the East Antarctica and Schirmacher oasis) 
proglacial lakes location and area (ignored 
lakes with wrong location and area less than 
0.01 sq.km; downloaded from QuAntarctica 
website - qant_lake, qeast_lake 

Rasterizing Antarctica proglacial lakes 
qant_lake and qeast_lake for water 
correction. 

British Antarctic 
Survey v7.6 & v7.3 
[BAS] 

Polar Antarctic zone (60°S-90°S), South 
Georgia and the South Sandwich Islands 
(50°S-60°S), 2m & 30m resolution, relevant 
for 2022 [2022.11.11–2022.11.11], in 
shapefile format. 
Antarctic Digital Database (ADD) compiles 
the best available geographic information 
covering south of 60°S. Following datasets 
are used: (i) Medium resolution vector 
polygons of the Antarctic coastline v7.6 
(2022.11.11) - coastline for Antarctica 
(‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’ 
attribute), used for surface detection by type 
and location (i.e. islands); all surface types 
considered as land and fully covered with 
glacier; The South Georgia GIS is a 
collection of topographic, management and 
scientific datasets about South Georgia and 
the South Sandwich Islands, used for 
surface detection by type and location (i.e. 
islands) and correction of artificial islands 
50°S-60°S (fields 'seamask' - polygon 
excludes land (& islands), 'coastline' - 
polygon includes land (& islands)); 
downloaded from BAS website - 
Antarctica_coast, AntRegion_coast 
(coastlines for all islands of the South 
Georgia region), AntRegion_ice ('Ice', 
'Lake', 'Moraine', 'Ice-free'), AntRegion_lake 
('Ice', 'Lake', 'Moraine', 'Ice-free’; 444 lakes), 
AntRegion1_lake (lake detailed information 
for small Barff region), AntRegion2_lake 
(Busen region), AntRegion3_lake (Thatcher 
region) 

Rasterizing the South Georgia and the 
South Sandwich Islands coastline 
AntRegion_coast - to correct MERIT 
DEM elevation data merit30 over that 
region. 
Merging and rasterizing (i) Antarctica 
and the South Georgia and the South 
Sandwich Islands coastlines (assumed 
as fully land), i.e. Antarctica_coast and 
AntRegion_coast - to correct pixel type 
for land over the region during 
Water_History data use; (ii) Antarctica 
coastline (assumed as fully covered 
with glaciers) and the South Georgia 
and the South Sandwich Islands ice 
cover, i.e. Antarctica_coast and 
AntRegion_ice - to correct pixel type for 
land over the region during 
Water_History data use; (iii) Antarctica 
and the South Georgia and the South 
Sandwich Islands lake cover, i.e. 
qant_lake, qeast_lake, and 
AntRegion_lake, AntRegion1_lake, 
AntRegion2_lake, AntRegion3_lake - to 
correct pixel type for water over the 
region during Water_History data use. 

Global Land Ice 
Measurements 
from Space project 
data [GLIMS] 

Global (except where data not monitored), 
30m resolution, relevant for 2023 
[1750.01.01-2023.06.07], in shapefile + table 
format. 

Merging rasterized ice covers for 
Svalbard svalbard_ice, Iceland 
iceland_ice, Greenland gimp_ice, 
Antarctica Antarctica_coast, the South 
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Global ice cover comprises of 1186805 total 
records (730338 not 'gone'; downloaded 
from Google Earth Engine (GEE) catalogue - 
glims_ice 

Georgia and the South Sandwich 
Islands AntRegion_ice - to correct pixel 
type for land over the region during 
Water_History data use. 

MERIT DEM: Multi-
Error-Removed 
Improved-Terrain 
DEM 
[MERIT DEM] 

Global (except Antarctica), 90°N-60°S, 90m 
resolution, relevant for 2017 [1987.01.01–
2017.01.01], in GeoTiff format. 
MERIT DEM is a high accuracy global DEM 
at 3 arc second (~90 m at the equator) 
resolution produced by eliminating major 
error components from existing DEMs 
(NASA SRTM3 DEM, JAXA AW3D DEM, 
Viewfinder Panoramas DEM). Significant 
improvements were found in flat regions 
where height errors were larger than 
topography variability, and landscapes such 
as river networks and hill-valley structures 
became clearly represented; downloaded 
from Yamazaki Lab MERIT DEM website - 
merit (elevation data in meters) 

Correcting wrongly allocated islands 
near South Georgia and the South 
Sandwich Islands (East of the southern 
point of South America) with the 
rasterized coastline from BAS data, i.e. 
Antarctica_coast and AntRegion_coast 
(islands with no elevation data are 
marked as -9999) to generate merit30. 

JRC Monthly Water 
History 
[Water_History] 

Global (except Antarctica, far North), 78°N-
60°S, 30m resolution, monthly, relevant for 
1984-2021 [1984.03.16–2022.01.01], in 
GeoTiff format. 
This dataset contains maps of the location 
and temporal distribution of surface water 
from 1984 to 2021 and provides statistics on 
the extent and change of those water 
surfaces. Monthly History collection holds 
the entire history of water detection on a 
month-by-month basis. Areas where water 
has never been detected are masked; 
download from GEE catalogue - 
water_history (0: No data, 1: Not water, 2: 
Water; 454 maps), transition (categorical 
classification of water change between first 
and last year of available data; 0:NoChange, 
1:Permanent, 2:NewPermanent, 
3:LostPermanent, 7:SeasonalToPermanent) 

Creating permanent water map based 
on transition layer by selecting only 
1:Permanent, 2:NewPermanent, 
7:SeasonalToPermanent water types - 
to fill the missing data over Armenia and 
Azerbaijan in the water body mask 
glo30_wbm. 
Calculating water_class map based on 
monthly Water_History data for the past 
10 years (2012-2021) by counting how 
many times each pixel was marked 
0:NoData, 1:NotWater, 2:Water (in total 
each type could be max 120 times, in 
reality due to missing data much less), 
then marking pixels with greater number 
of 1:NotWater as land, 2:Water as 
water, and rest as 120 (only 0:NoData 
or number of land and water were 
equal) - to correct the gap-filled water 
body mask glo30_wbm. 

Landsat Global 
Land Survey 1975 
[GLS1975] 

Global (except where data not available), 
60m resolution, relevant for 1975 
[1972.07.25-1983.02.20], in GeoTiff format. 
The Global Land Survey (GLS) 1975 is a 
global collection of imagery from the Landsat 
Multispectral Scanner (MSS). Most scenes 
were acquired by Landsat 1-3 in 1972-1983 
(data gaps have been filled with scenes 
acquired by Landsat 4-5 in 1982-1987). 
These data contain 4 spectral bands: Green, 
Red, an NIR band, and a SWIR band; 
downloaded from GEE catalogue - gls1975 
(short-wavelength infrared (800-1100 nm))  

Creating permanent water map for the 
1972-1981 period based on gls1975 by 
selecting only short-wavelength infrared 
layer values less than or equal 12. 

Copernicus DEM 
GLO-30: Global 
30m Digital 
Elevation Model 
[GLO30] 

Global (except Armenia and Azerbaijan), 
90°N-90°S, 30m resolution, relevant for 2015 
[2010.12.01–2015.01.31], in GeoTiff format. 
The Copernicus DEM is a Digital Surface 
Model (DSM) representing the Earth's 
surface, including buildings, infrastructure 
and vegetation. Derived from an edited DSM 
named WorldDEM&trade, i.e. flattening of 

Filling the missing data of the water 
body mask glo30_wbm: (i) over 
Armenia and Azerbaijan with permanent 
water based on transition layer; (ii) over 
89°-90°S with only land. 
Correcting the gap-filled water body 
mask glo30_wbm with (i) inland_water 
over Maracaibo Lake and Azov Sea; (ii) 
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water bodies and consistent flow of rivers 
has been included. The WorldDEM product 
is based on the radar satellite data acquired 
during the TanDEM-X Mission; downloaded 
from GEE catalogue - glo30_wbm (water 
body mask (0=NoWater, 1=Ocean, 2=Lake, 
3=River) with missing Armenia, Azerbaijan), 
glo30_elv (elevation data in meters with 
missing Armenia, Azerbaijan), 
glo90_elv_region (elevation data from 
Copernicus catalogue over Armenia, 
Azerbaijan at 90m) 

land over water_class(land) and 
merit30(elevation greater 0m or equal -
9999). 

Large Scale 
International 
Boundary 
Polygons, Detailed 
[LSIB] 

Global, 90°N-90°S, 30m resolution, relevant 
for 2017 [2017.12.29-2017.12.29], in 
shapefile format. 
LSIB is derived from (i) LSIB line vector file, 
and (ii) World Vector Shorelines (WVS) from 
the National Geospatial-Intelligence Agency 
(NGA). The interior boundaries reflect U.S. 
government policies on boundaries, 
boundary disputes, and sovereignty; 
downloaded from GEE catalogue - LSIB 
(attributes used are 'COUNTRY_NA' US-
recognized country name, 'OBJECTID', 
'Shape_Area'; in total 284 countries/ 180,741 
features) 

Calculating missing island mask by 
masking pixels of the corrected water 
body mask glo30_wbm which belong to 
any LSIB country. 

 

2.3.2 Processing 

The main idea of the developed methodology is to use only most necessary input datasets 

and be easily adaptable if the new better dataset or dataset’s version comes out. 

In short, time-varying lake covers were generated in the following way. First, we determine the 

dominant grid cell type (i.e. water, notWater, noData) for (i) the whole period, (ii) each month 

of the whole period, (iii) every 10 years of the whole period. Second, we fill the  noData grid 

cell type by combining previously obtained information. Third, we calculate permanent water 

distribution per 10-year period and (i) correct regionally in space over glaciers, islands, and 

far north areas, (ii) correct regionally in time for years prior to available data. Then, we 

calculate seasonal monthly water distribution per 10-year period following the same procedure 

as for permanent water. Finally, we separate water into inland and ocean, and average data 

from 30 meters to 1 km. 

For all the details on methodology please see Table 4, and for details on exceptional areas 

please see Table 5. 

Table 4: Detailed description of time-varying lake methodology. 

Dataset used / Step description / Step output 

Monthly History 

Calculating number of (1: Not water) and (2: Water) occurrences per pixel over 1984-2021 (i) all data, (ii) each 
month data.    

Output: number of 'NotWater' 13 global maps, 30m resolution regular grid; number of 'Water' 13 global maps, 
30m resolution regular grid 
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Monthly History 

Determining the type of each pixel over 1984-2021 (i) all data, (ii) each month data: 
(1) definitely (1: Not water) - number of (1: Not water) is greater than number of (2: Water), and number of (2: 
Water) is less or equal 10 and less or equal 5% of total (1: Not water) and (2: Water) sum; 
(2) definitely (2: Water) - number of (2: Water) is greater than number of (1: Not water), and number of (1: Not 
water) is less or equal 10 and less or equal 5% of total (1: Not water) and (2: Water) sum; 
(3) surface type - '0' definitely (1: Not water), '1' definitely (2: Water), '-1' where criteria were not met 
(undecided). 

Output: surface type (i.e. 0 'NotWater', 1 'Water', -1 'Undecided') 13 global maps, 30m resolution regular grid 

Monthly History 

Updating the type of each pixel over 1984-2021 monthly data - filling '-1' (undecided) values of all data with 
appropriate monthly data. 

Output: surface type (i.e. 0 'NotWater', 1 'Water', -1 'Undecided') 12 global maps, 30m resolution regular grid 

Monthly History 

Determining the type of each pixel over each 10-year period of 1982-2021: 
(1) calculating number of (1: Not water) and (2: Water) occurrences per pixel over each month data; 
(2) calculating of (1: Not water) and (2: Water) occurrence percentages of total (1: Not water) and (2: Water) 
sum per pixel over each month data;  
(3) updating (2: Water) occurrence percentage with water based on 1984-2021 appropriate month values; 
(4) updating (1: Not water) occurrence percentage with land where (2: Water) occurrence percentage equals 
100%; 
(5) determining water presence per pixel over each month data - '1' if (2: Water) occurrence percentage is 
greater or equal 75%, '0' otherwise;  
(6) determining permanent water presence per pixel - minimum water presence within 12 months, filled with 
water where (1: Not water) occurrence percentage is less then 10%. 

Output: surface type (i.e. 0 'NotWater', 1 'Water', -1 'Undecided') 4x13 global maps, 30m resolution regular grid 

Monthly History, regional glacier datasets (Svalbard, Iceland, QGRL, GIMP, QANT, BAS, GLIMS), Large Scale 
International Boundary Polygons, Detailed [LSIB], Copernicus DEM GLO-30: Global 30m Digital Elevation 
Model [GLO30] 

Updating permanent water presence (i.e. type of each pixel on the permanent water map) over each 10-year 
period of 1982-2021: 
(1) filling with land over Antarctica and the South Georgia and the South Sandwich Islands (over 
Antarctica_coast and AntRegion_coast), over Greenland, and over global ice cover (over Svalbard 
svalbard_ice, Iceland iceland_ice, Greenland gimp_ice, Antarctica Antarctica_coast, the South Georgia and 
the South Sandwich Islands AntRegion_ice);  
(2) filling with water over Antarctica and the South Georgia and the South Sandwich Islands (i.e. qant_lake, 
qeast_lake, and AntRegion_lake, AntRegion1_lake, AntRegion2_lake, AntRegion3_lake), over Greenland (i.e. 
qgrl_lake); 
(3) (extra only for 10-year periods of 1982-2011) due to less valid observations in earlier periods some islands 
might become missing - fill missing islands with 2012-2021 values (i.e. missing islands are areas with 
land/lake/river over corrected water body mask glo30_wbm that do not belong to any country based on country 
mask lsib). 

Output: surface type (i.e. 0 'NotWater', 1 'Water', -1 'Undecided') 4(periods)x1 global maps, 30m resolution 
regular grid 
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Monthly History, GLO30 

Updating permanent water presence (i.e. type of each pixel on the permanent water map) over each 10-year 
period of 1982-2021: 
(1) due to low number of valid observations and negligible water variation in time some areas at the far north 
and island Sao Tome (near Africa) were replaced with corrected water body mask glo30_wbm; 
(2) (extra only for 10-year periods of 1982-2011) due to less valid observations in earlier periods and negligible 
water variation in time some regions (i.e. Iceland, Faroe Islands, Novaja Zemla island, Taymyrsky Kraj region, 
Anju Islands, Wrangler island, and South-West Africa) were replaced with 2012-2021 values; 
(3) (extra only for 10-year periods of 1982-2001) due to less valid observations in earlier periods and strong 
anthropogenic impact some regions (i.e. islands near Dubai, United Arab Emirates) were replaced with water; 
(4) (extra only for 10-year period of 1982-1991) due to negligible number of valid observations in earlier period 
only some regions were updated with 1982-1991 data (i.e. Great Salt Lake in USA, Lake Mead in USA, Lake 
Poopo in Bolivia, Lake Chad in Chad/Cameroon/Nigeria/Niger, Dead Sea in Israel/Jordan, Lake Habbaniyah 
in Iraq, Lake Milh in Iraq, Lake Urmia in Iran, Aral Sea in Kazakhstan/Uzbekistan, Menindee Lakes in Australia; 
and large regions surrounding Great Salt Lake in USA, Mississippi River in USA, Brazil, Argentina, Australia), 
rest remained the same as 1992-2001 period; 
(5) separating water into inland and ocean (i.e. based on the corrected water body mask glo30_wbm globally, 
except Antarctica - based on overlap and polygon in/out detecting algorithms); 
(6) reducing resolution with mean to a 1-km regular grid (EPSG:4326) resolution.  

Output: water cover 2(all water, only inland water)x4(periods)x1 global maps, 30m resolution regular grid; water 
cover fraction 2(all water, only inland water)x4(periods)x1 global maps, 1km resolution regular grid 

Landsat Global Land Survey 1975 [GLS1975], GLO30 

Updating permanent water presence (i.e. type of each pixel on the permanent water map) over each 10-year 
period of 1962-1981: 
(1) (extra only for 10-year period of 1972-1981) due to high noise level of the short-wavelength infrared data 
from gls1975 only data for certain regions were processed (only values less than or equal to 12 were used), 
modified (individual for each region) and used (i.e. Great Salt Lake in USA, Lake Mead in USA, Lake Poopo in 
Bolivia, Lake Chad in Chad/Cameroon/Nigeria/Niger, Dead Sea in Israel/Jordan, Lake Habbaniyah in Iraq, 
Lake Milh in Iraq, Lake Urmia in Iran, Aral Sea in Kazakhstan/Uzbekistan, Menindee Lakes in Australia), rest 
remained the same as 1982-1991 period; 
(2) (extra only for 10-year period of 1962-1971) due to fragmented and approximate information available (i.e. 
text description, smoothed printed maps, very little details) only for certain regions (i.e. Great Salt Lake in USA, 
Lake Mead in USA, Lake Poopo in Bolivia, Lake Chad in Chad/Cameroon/Nigeria/Niger, Dead Sea in 
Israel/Jordan, Lake Habbaniyah in Iraq, Lake Milh in Iraq, Lake Urmia in Iran, Aral Sea in 
Kazakhstan/Uzbekistan, Menindee Lakes in Australia) gap-filled elevation data from glo30 is processed, 
modified (individual for each region) and used, rest remained the same as 1982-1991 period; 
(3) separating water into inland and ocean (i.e. based on the corrected water body mask glo30_wbm globally, 
except Antarctica - based on overlap and polygon in/out detecting algorithms); 
(4) reducing resolution with mean to a 1-km regular grid (EPSG:4326) resolution.  

Output: water cover 2(all water, only inland water)x2(periods)x1 global maps, 30m resolution regular grid; water 
cover fraction 2(all water, only inland water)x2(periods)x1 global maps, 1km resolution regular grid 
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Monthly History 

Determining seasonal water presence (12 months) over each 10-year period of 1962-2021: 
NOTE: for periods 1962-1971, 1972-1981, 1982-1991 monthly data for 1991-2001 is used 
(0) maximum of updated permanent water presence and month's water presence, then following the same 
steps as for the permanent water presence update; i.e.: 
(1) filling with land over Antarctica and the South Georgia and the South Sandwich Islands (over 
Antarctica_coast and AntRegion_coast), over Greenland, and over global ice cover (over Svalbard 
svalbard_ice, Iceland iceland_ice, Greenland gimp_ice, Antarctica Antarctica_coast, the South Georgia and 
the South Sandwich Islands AntRegion_ice);  
(2) filling with water over Antarctica and the South Georgia and the South Sandwich Islands (i.e. qant_lake, 
qeast_lake, and AntRegion_lake, AntRegion1_lake, AntRegion2_lake, AntRegion3_lake), over Greenland (i.e. 
qgrl_lake); 
(3) filling missing islands with 2012-2021 values; 
(4) replacing the far north and island Sao Tome (near Africa) with corrected water body mask glo30_wbm; 
(5) replacing certain regions (i.e. Iceland, Faroe Islands, Novaja Zemla island, Taymyrsky Kraj region, Anju 
Islands, Wrangler island, and South-West Africa) with 2012-2021 values; 
(6) additional regional correction in time for 
      (i) Toshka Lakes in Egypt (were formed only in 1998) - area is filled with land for periods 1962-1971, 1972-
1981, 1982-1991, 1992-2001; 
      (ii) islands near Dubai in United Arab Emirates (were built only in 2001-2003) - area is filled with water for 
periods 1962-1971, 1972-1981, 1982-1991, 1992-2001; 
      (iii) Great Salt Lake in USA (1962-1971 distribution mimics 2012-2021) - for period 1962-1971 area is filled 
with maximum water distribution between perm_1962-1971 and monthN_2012-2021; 
(7) separating water into inland and ocean (i.e. based on the corrected water body mask glo30_wbm globally, 
except Antarctica - based on overlap and polygon in/out detecting algorithms); 
(8) reducing resolution with mean to a 1-km regular grid (EPSG:4326) resolution.  

Output: water cover 2(all water, only inland water)x6(periods)x12 global maps, 30m resolution regular grid; 
water cover fraction 2(all water, only inland water)x6(periods)x12 global maps, 1km resolution regular grid 

 

Table 5: Detailed description of areas with additional correction. 

Location / Correction source / Correction description 

Great Salt Lake  

Corrections based on https://pubs.usgs.gov/wsp/2332/report.pdf and details from 
https://en.wikipedia.org/wiki/Great_Salt_Lake 

The area of the lake can fluctuate substantially due to its low average depth of 4.9 m. In the 1980s, it reached 
a historic high of 8,500 km2.  
In 2021, it fell to its lowest recorded area at 2,500 km2, falling below the previous low set in 1963, due to years 
of sustained drought and increased water diversion upstream of the lake. 
The water level of the lake has a yearly cycle - the rise between September and December and the decline 
between March and July. [https://pubs.usgs.gov/wsp/2332/report.pdf]. 

Lake Mead  

Corrections based on https://earthobservatory.nasa.gov/images/45945/water-level-changes-in-lake-mead 

Reservoir was build in 1930s (still filling in 1937). In August 2010, Lake Mead reached its lowest level since 
1956. 
According to records, the lake held roughly 27.8 million acre-feet of water at its high point in 1941, and levels 
have fluctuated through drought in the 1950s and the filling of another upstream reservoir, Lake Powell, in the 
1960s. 
Lake levels rose steadily through the 1980s, reaching 24.8 million acre-feet in August 1985. But as of August 
2010, Lake Mead held 10.35 million acre-feet, just 37 percent of the lake’s capacity. 

https://pubs.usgs.gov/wsp/2332/report.pdf
https://en.wikipedia.org/wiki/Great_Salt_Lake
https://pubs.usgs.gov/wsp/2332/report.pdf
https://earthobservatory.nasa.gov/images/45945/water-level-changes-in-lake-mead
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Lake Poopo  

Corrections based on https://www.tandfonline.com/doi/pdf/10.1623/hysj.51.1.98 (Fig.4) and details from 
https://en.wikipedia.org/wiki/Lake_Poop%C3%B3 

The lake lacked any major outlet and has a mean depth of less than 3 m, the surface area differed greatly 
seasonally. 
In 2002, the lake was designated as a site for conservation under the Ramsar Convention. By December 2015, 
the lake had completely dried up, leaving only a few marshy areas. Despite the lake rebounding from two 
previous recorded drying instances, as of 2016, the lake's recovery is considered unlikely. 
Suggested causes of the decline are the melting of the Andes glaciers and loss of their waters, because of a 
drought due to climate change, as well as continued diversion of water for mining and agriculture. 
At its maximum in 1986, the lake had an area of 3,500 km2. During the years that followed, the surface area 
steadily decreased until 1994, when the lake disappeared completely (20.01.2016 - declared a disaster zone). 
The time period between 1975 and 1992 was the longest period in recent times when the lake had a continuous 
water body. 
Max rainfall in winter, min precipitation (draught) in May-August. 

Lake Chad  

Corrections based on https://www.grida.no/resources/5593 and details from https://www.britannica.com/list/7-
lakes-that-are-drying-up 

Historically, surface area varies greatly by season as well as from year to year. When the surface of the lake 
is ~280 m above sea level, the area is about 17,800 square km. In the early 21st century, the area was typically 
about 1,500 square km. 
The surface area typically reaches its maximum in late October or early November before shrinking by more 
than half by late April or early May.  
The volume of the lake reflects local precipitation and the discharge of its catchment area, balanced against 
losses through evaporation, transpiration, and seepage. 
Since the 1960s, however, Lake Chad has shrunk approximately 90 percent, because of variations in climate 
and water withdrawals from irrigation. 

Dead Sea  

Corrections based on images from https://link.springer.com/article/10.1007/s42452-020-2146-0 and details 
from https://en.wikipedia.org/wiki/Dead_Sea 

Since 1930, when its surface was 1,050 km2 and its level was 390 m below sea level, the Dead Sea has been 
monitored continuously.  
The Dead Sea has been rapidly shrinking since the 1960s because of diversion of incoming water from the 
Jordan River to the north as part of the National Water Carrier scheme, completed in 1964. 
As of 2021, the surface of the Sea has shrunk by about 33 percent since the 1960s. 

Lake Habbaniyah and Lake Milh  

Information for corrections is based on 
https://www.researchgate.net/publication/329983297_Comparison_of_derived_Indices_and_unsupervised_cl
assification_for_AL-Razaza_Lake_dehydration_extent_using_multi-
temporal_satellite_data_and_remote_sensing_analysis and details from 
https://earthobservatory.nasa.gov/images/147315/iraq-lakes-bounce-back 

Lake Milh was constructed in 1970s, but there is no indication what was there before that. 
NOTE: 1962-1971 period is identical to 1972-1981 as no better information is available. 

Lake Urmia  

Corrections based on images from https://www.theguardian.com/world/iran-blog/2015/jan/23/iran-lake-urmia-
drying-up-new-research-scientists-urge-action and detailed analysis from 
https://www.bbc.com/future/article/20210225-lake-urmia-the-resurrection-of-irans-most-famous-salt-lake 

Following the 1979 revolution, which overthrew the monarchy, Iran adopted a policy of food self-sufficiency 
and started growing irrigation-intensive crops. 

https://www.tandfonline.com/doi/pdf/10.1623/hysj.51.1.98
https://en.wikipedia.org/wiki/Lake_Poop%C3%B3
https://www.grida.no/resources/5593
https://www.britannica.com/list/7-lakes-that-are-drying-up
https://www.britannica.com/list/7-lakes-that-are-drying-up
https://link.springer.com/article/10.1007/s42452-020-2146-0
https://en.wikipedia.org/wiki/Dead_Sea
https://www.researchgate.net/publication/329983297_Comparison_of_derived_Indices_and_unsupervised_classification_for_AL-Razaza_Lake_dehydration_extent_using_multi-temporal_satellite_data_and_remote_sensing_analysis
https://www.researchgate.net/publication/329983297_Comparison_of_derived_Indices_and_unsupervised_classification_for_AL-Razaza_Lake_dehydration_extent_using_multi-temporal_satellite_data_and_remote_sensing_analysis
https://www.researchgate.net/publication/329983297_Comparison_of_derived_Indices_and_unsupervised_classification_for_AL-Razaza_Lake_dehydration_extent_using_multi-temporal_satellite_data_and_remote_sensing_analysis
https://earthobservatory.nasa.gov/images/147315/iraq-lakes-bounce-back
https://www.theguardian.com/world/iran-blog/2015/jan/23/iran-lake-urmia-drying-up-new-research-scientists-urge-action
https://www.theguardian.com/world/iran-blog/2015/jan/23/iran-lake-urmia-drying-up-new-research-scientists-urge-action
https://www.bbc.com/future/article/20210225-lake-urmia-the-resurrection-of-irans-most-famous-salt-lake
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For a while, until about 1995, the lake appeared to be just about holding on its own despite low rainfall since 
the 1970s. Things began to deteriorate quite quickly from there. 

Aral Sea  

Corrections based on https://www.britannica.com/place/Uzbekistan and extra info 
https://www.grida.no/resources/5615 

Aral Sea is an endorheic lake that used to be one of four largest lakes in the world with water surface area of 
68'000 sq.km. Historical records show that shrinking of the Aral Sea started at least in the middle of the 18th 
century and was accelerated in 1960’s after massive diversion of water for cotton and rice cultivation. Shrinking 
continued. Due to major Aral Sea recovery program launched in 2001 by Kazakhstan President Nursultan 
Nazarbayev and supported by the World Bank, Aral Sea water surface area in 2008 became more or less 
stable ~ 3'300 sq.km. [The Kazakh Miracle: Recovery of the North Aral Sea, Environment News Service (ENS) 
2008; http://www.ens-newswire.com/ens/aug2008/2008-08-01-01.asp]  
NOTE: 1962-1971 water distribution should be constant going backwards in time. 

Menindee Lakes  

Corrections are based on https://earthobservatory.nasa.gov/images/148336/menindee-lakes-finally-refilling 
and details from https://www.mdba.gov.au/water-management/infrastructure/menindee-lakes 

Work to use the Menindee Lakes for water conservation started in 1949, with major works finished in 1960 and 
overall completion in 1968. 
NOTE: 1962-1971 period is identical to 1972-1981 as no better information is available. 

Toshka Lakes  

Corrections are based on satellite images and event reports. 

Lake only formed in 1998 due to heavy flash floods. Started drying straight away, almost fully dried in 2018.  
From the middle of 2018 due to constant flash floods and heavy precipitation in Sudan and South Sudan fully 
regenerated and in August 2023 even formed a new lake. 

Dubai Islands  

Corrections are based on satellite images and news articles. 

Islands were built in 2001-2003. 

 

  

https://www.britannica.com/place/Uzbekistan
https://www.grida.no/resources/5615
https://earthobservatory.nasa.gov/images/148336/menindee-lakes-finally-refilling
https://www.mdba.gov.au/water-management/infrastructure/menindee-lakes
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3 Results  

3.1 Land Cover 

3.1.1  Timeseries of land use states and transition rates 

Figure 9 shows the global-scale comparison of absolute area per primary land-use class 
produced by our algorithm against LUH2 and HILDA+ historical reconstructions. Because our 
simulation is initialized in 1992 using the ESA-CCI climatology, any mismatch between 
modeled and reference extents at this start date is propagated (and typically magnified) when 
the time series is extended backward. As a result, our model overestimates cropland and 
forest areas relative to both LUH2 and HILDA+ in the early period, although it nevertheless 
reproduces the broad temporal trajectories specified by LUH2. 

Figure 10 presents the same evaluation restricted to the South American domain—a region of 
particular interest given the extensive deforestation of the Amazon. Here again we observe 
systematic overestimation of cropland and forest cover in our simulations compared to LUH2. 
Despite these amplitude biases, the algorithm successfully captures the temporal trend in 
land-use change prescribed by LUH2, indicating that the cellular transition rules and spatial 
allocation procedures are robust even in a region undergoing rapid land-cover dynamics. A 
notable source of this divergence lies in the harmonization process. During the alignment of 
LUH2 with ESACCI post-1992 data, no corrective scaling was applied to reconcile the 
mismatch in absolute land-use fractions at the starting point (1992). This decision was made 
deliberately to preserve continuity in land-use time series and avoid artificial discontinuities 
that could arise from abrupt magnitude corrections. As a result, differences in initial land-cover 
extents, particularly for certain classes, persisted throughout the pre-1992 period. 

Despite these initial discrepancies, our algorithm successfully captures the broader temporal 
trends and climatology associated with each land-use class as represented in LUH2. This is 
especially evident for the Forest and Crop categories, where the modeled trajectories closely 
follow LUH2 in both magnitude and temporal evolution, indicating effective adaptation and 
transition modeling for these classes. 

In contrast, performance varied significantly for other land-use classes—specifically Shrub, 
Pasture, and Urban. These classes exhibited pronounced deviations from LUH2, beginning 
with lower initial area magnitudes in 1992. In the case of Shrub and Pasture, these 
discrepancies compounded over time, leading to a rapid decline in their respective extents 
when going back in time. Eventually, these categories disappeared entirely from many 
subgrids when going back in time, eliminating their availability for further transitions within the 
modeled system. We attribute this behavior primarily to two factors: 

1. Initial Magnitude Mismatch: The underestimation of baseline coverage for these 
classes in 1992 reduced their persistence in the backward-projected time series. 
 

2. Saturation and Spatial Competition: Limited spatial availability within subgrids may 
have favored transitions toward dominant classes (e.g., Forest or Cropland), 
effectively "saturating" the grid and crowding out minor classes such as Shrub and 
Pasture. This was partially remedied as explained in the Methodology section, but 
was not completely effective. 
 

These effects were most pronounced for Shrub, Pasture, and Urban categories, which showed 
a declining presence and less fidelity to LUH2 trends for past periods. In particular, the 
absence of Pasture land in subgrids past a certain historical threshold suggests the algorithm's 
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sensitivity to initial conditions and competitive dynamics among land-use types in constrained 
spatial environments. 

In summary, while the algorithm demonstrates strong capability in aligning with reference 
datasets for major land-cover types (notably Forest and Cropland), the representation of minor 
or transitionally unstable classes highlights challenges related to initialization, subgrid spatial 
dynamics, and the legacy of dataset harmonization choices. 
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Figure 9: Comparison of basic land-use classes of HILDA+ (yellow) and LUH2 (green) 
along with CERISE LULC simulations (blue); absolute areas (sq. m) (1925 - 1992) and 

yearly differences (global scale). 
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Figure 10: Absolute area and yearly difference area map over south America 
comparing HILDA+ (yellow) and LUH2 (green) along with CERISE LULC simulations 
(blue); absolute areas (sq. m) (1925 - 1992) and yearly differences (South America). 
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3.1.2 Spatial maps of different periods 

Figures 11 and 12 present the spatial distribution of land cover types derived from the 
implemented classification algorithm for the South American region and the global scale, 
respectively. These maps highlight notable temporal changes and regional land cover 
dynamics between the selected timeframes. 

The South American regional map (Figure 11) reveals pronounced anthropogenic impacts, 
with extensive deforestation patterns most evident in the Amazon Basin. These changes are 
especially prominent between 1925 and 1992, reflecting widespread forest clearance likely 
linked to agricultural expansion, logging, and infrastructure development. The spatial 
fragmentation and reduction in forest cover in this region underscore the intensity of human-
driven land transformation processes over the study period. 

In contrast, the global-scale analysis (Figure 12), one of the most prominent observations is 
the significant expansion and densification of shrubland across the northern African region 
from 1992 to 1925. Particularly in the Sahel and adjacent arid zones. This trend may be 
indicative of climate-driven vegetation shifts or altered land management practices. Such 
changes suggest either natural ecological succession or semi-arid land rehabilitation efforts 
in response to historic desertification. A similar trend is observed over the central United States 
when examining land cover transitions backward in time to 1925. Specifically, we find a 
notable increase in shrubland cover compared to the 1992 baseline, indicating that the LUH2 
dataset attributes significant cropland-to-shrubland conversions during the early 20th century. 
This likely reflects land abandonment or reversion to natural vegetation prior to large-scale 
agricultural intensification.  

Interestingly, in the southernmost regions of South America, including parts of Argentina and 
Chile, the land cover maps reveal a noticeable trend. Specifically, areas classified as 
croplands in 1992 show a notable transition to forested regions in the 1925 dataset. This 
suggests that reforestation or natural regeneration may have occurred in these areas post-
1925, or alternatively, that agricultural land abandonment allowed for vegetative recovery over 
time. These findings highlight the spatial heterogeneity of land cover dynamics across different 
climatic and socio-political contexts within the continent. 

Together, these spatial patterns emphasize the algorithm’s ability to detect both subtle and 
large-scale changes in vegetation cover, offering valuable insights into both climatic variability 
and anthropogenic land use practices across temporal and geographic scales. 
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Figure 11: Historical CERISE land cover maps comparing years 1992 (left) and 1925 
(right) over South America. 

 

Figure 12: Global historical CERISE land cover maps comparing years 1992 (top) and 
1925 (bottom). 
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3.2 LAI 

The results of the entire pipeline are 900 files in NetCDF and Zarr covering the period from 
1925 to 1999. Figure 13 illustrates a single month of the LAI ML reconstruction resultss. 

 

Figure 13: A global LAI reconstructed with ML for June 1990, created by stitching together 
regional models during post-processing. 

 

The input data for both training and ground truth presents challenges due to its highly 

imbalanced nature and varying quality. The CONFESS LAI dataset is divided into two distinct 

periods: the years 2000-2014, which are considered reliable, and the years 1992-1999, which 

lack comparable quality, particularly evident in large jumps in LAI values within the Amazon 

region. Consequently, the earlier period (1992-1999) was excluded from training and used 

solely for comparison, with only the years 2000-2014 used for training and testing. The LAI 

values also exhibit a significant imbalance, with over 92% of global values falling within the 

range, potentially impacting the model's ability to capture higher values. Additionally, data 

quality diminishes further back in time. Both LUH2h and HILDA datasets incorporate satellite-

era information from the late 20th century, but earlier years lack comprehensive global 

coverage. This results in the disappearance of distinctive patterns and the emergence of large 

patterns resembling national borders, likely due to the use of national averages in the absence 

of spatially accurate data. Therefore, any model trained on this dataset will inherently 

underperform when the less accurate early data is included. Additionally, the lack of sufficiently 

long, high-quality data prevents us from building a model that can accurately capture 

spatiotemporal relationships. As a result, we have intentionally avoided modeling the temporal 

aspect of the data, focusing instead on spatial relationships and relying on autoregressive 

prediction and the correlation between the predicament (LAI) and 15 predictors. Our approach 

aims to identify patterns within the spatial domain rather than establish relationships over time.  

 

This led us to discard the years prior to 2000 for any training and testing purposes. The 

resulting data show continuity with the CONFESS LAI from 2000, which improves the 

harmonization of the CONFESS LAI for the period from 1982 to 1999 on a global scale. Figure 

14 presents the global average of the monthly LAI from 1925 to 2015, for the CONFESS and 
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CERISE LAI datasets in 1km resolution and AVHRR-GEO2 LAI in 4 km resolution. A time-

lapse video of the reconstructed global LAI maps from 1990 to 1950 is publicly available on 

youtube (https://youtu.be/iZl7tIzPt-U). 

 

Figure 14: Time series of global average LAI values from 1925 to 2015, comparing AVHRR-
GEO2 LAI (blue) in 4 km resolution, CERISE (orange) & CONFESS including the original 

(1993-2019) and extended CONFESS (1982-1993) (green) LAI in 1 km resolution. 

 

As the model is trained on data from 2000 to 2014, it clearly shows a tendency to predict 
higher LAI values compared to the CONFESS LAI. This tendency persists further into the past 
as the inference continues. 

One known issue with CONFESS LAI was that in areas with high LAI, especially in the Amazon 
forest, there are strong discontinuities in LAI values and trends in the years prior to 2000 due 
to the inherent differences in the datasets that constitute the overall dataset. This issue is 
visible in Figure 15, bottom panel, examples 3 and 6. Despite the improvement in achieving a 
smoother transition to earlier years at the global scale, the performance varies significantly 
depending on the study region. We compared the changes across several areas with high LAI 
values and observed differing behaviors in smaller regions. Figure 15 illustrates how LAI 
changes across four study areas, marked on the accompanying maps. The CONFESS LAI is 
shown in green, while the CERISE LAI is displayed in orange for the overlapping period and 
in blue for the remaining years. In regions with relatively low LAI, like most of the Northern 
Hemisphere, we see an increase in LAI values as backward temporal reconstruction 
progresses from 1990 towards 1925. In contrast, in areas with high LAI values (such as the 
Amazon, central Africa, and East Asia), we see that LAI values are decreasing as the 
reconstruction progresses towards the year 1925. 

 

https://youtu.be/iZl7tIzPt-U
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Figure 15: Time series of regional average LAI values from 1925 to 2000, comparing 
CONFESS LAI (ground truth in green) and CERISE LAI (blue and orange). 

We believe this results from the model’s training objective to maximize the fit to the average 
LAI. This objective tends to incentivize the model to reduce extreme high and low predictions, 
pulling estimates closer to the average values within the training regions. Unfortunately, this 
leads the model to either significantly underestimate or overestimate LAI values in certain 
regions, even while achieving a good fit to the overall average LAI. Figure 16 below shows the 
percentage difference in the time-varying CERISE high LAI relative to the IFS climatological 
high LAI (climate V21). The top left plot shows that in January 1940, there was about a 40% 
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reduction in CERISE high LAI over much of the southern hemisphere compared with climate 
V21. In contrast, the northern hemisphere shows a 40% increase in high LAI widely over North 
America and Europe. These regional differences appear to be overestimated, even if the 
global average differences are relatively small. Furthermore, the sharp reduction in high LAI 
over South America seems counter-intuitive, given that high vegetation cover was much larger 
in the CERISE dataset for 1940 than in climate V21. The equivalent plot for July 1940 is shown 
in the top right and shows different patterns in the northern hemisphere compared to January 
1940, with a 40% reduction in the CERISE high LAI over much of North America and Europe. 
A reduced signal is present over the southern hemisphere relative to January 1940. The 
equivalent plots for January and July 1960 are shown below the 1940 plots. The plots for 1940 
and 1960 are almost identical, demonstrating very limited inter-annual variability in the 
CERISE LAI datasets between 1940 and 1960. This is expected given that the training used 
to generate the CERISE LAI datasets does not take into account the seasonal weather 
anomalies.   
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Figure 16: Figures illustrate the Leaf Area Index (LAI) difference between several past years 
(1925, 1930, 1940, 1950, 1960, 1970, 1980, 1990) and 1999. Red areas indicate higher LAI 

values in the earlier year, while blue areas indicate higher LAI in 1999. 

 

 

Figure 17: Percentage difference for CERISE high LAI vs climate V21 high LAI (positive 
means more LAI in CERISE). The top left (right) plot shows the % difference for January 

(July) 1940 and the bottom plots are the equivalent for 1960. 

In addition to the general tendency of the model to shift LAI predictions toward regional 
averages, as discussed above, another contributing issue we have observed is the model’s 
sensitivity to significant changes in the input data. These shifts, which often occur on a decadal 
scale, are reflected in the model’s predictions.  

 

3.3 Lake Cover 

Global seasonally varying water distribution maps were generated based on high horizontal 
(30 meters) and temporal (month) resolution satellite data for the past 50 years and some 
high-fidelity auxiliary data (e.g. coastline shapefiles, elevation datasets). The main data input 
is from the Joint Research Centre (JRC) Global Surface Water Explorer (GSWE) dataset 
(Pekel et al., 2016) at 30 meter resolution (grid EPSG:4326) covering the period 1984-2021: 
‘monthlyHistory’ – monthly water distribution with water/ notWater/ noData data, to further 
customise water classes based on a relevant period (e.g. 2012-2021). In addition, are used 
Copernicus GLO30 dataset at 30 meter resolution (grid EPSG:4326) ‘waterBodyMask’ to 
separate the ocean from inland water; and numerous regional glacier datasets at 15-100 m 
resolution (i.e. British Antarctic Survey, QUANTARCTICA, GIMP project, QGREENLAND, 
Norwegian Institute, Icelandic Met service) to improve water distribution over relevant regions. 

Global seasonally varying water distribution maps generated for 1992-2021 are fully 
independent and are purely based on satellite data. Earlier (1962-1991) maps have in general 
the 1992-2001 period as a baseline and are updated only regionally - based on available 
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reliable satellite information or historic records (i.e. maps, verbal description) with 
supplementary elevation data criteria. 

Generated maps are grouped per 10-year periods (all available periods: 1962-1971, 1972-
1981, 1982-1991, 1992-2001, 2002-2011, 2012-2021), each decade has one permanent 
water map and twelve monthly maps (i.e. permanent water + monthly delta): 

● 1992-2021 (i.e. 1992-2001, 2002-2011, 2012-2021) maps are fully independent and 
are purely based on satellite data;  

● 1962-1991 (i.e. 1962-1971, 1972-1981, 1982-1991) maps have in general the 1992-
2001 period as a baseline and are updated only regionally - based on available reliable 
satellite information or historic records (i.e. maps, verbal description), and elevation 
data criteria; 

● 1925-1961 (i.e. 1925-1931, 1932-1941, 1942-1951, 1952-1961) maps use the maps 
from the 1962-1971 decade, because (i) it had booming water-related anthropogenic 
activities, i.e. building of large reservoirs and irrigation channels, re-routing rivers, etc.; 
(ii) it was the last decade with the acceptable amount and quality of in situ data to make 
any assumptions/ calculations or verification. 

The regional map corrections and updates were implemented for regions with:  

● frozen 2012-2021 distribution – north of 78°N, Sao Tome island and south-west Africa, 
Antarctica and South Georgia and the South Sandwich Islands; 

● 1982-1991 baseline distribution – large regions surrounding Great Salt Lake (USA), 
Mississippi River (USA), Brazil, Argentina, Australia; 

● altered baseline distribution to match reality – Toshka lakes (Egypt, formed in 1998), 
Dubai islands (UAE, built in 2001-2003), Great Salt Lake (USA, 1962-1971 water 
distribution mimics 2012-2021 period); 

● updated baseline distribution to match historical information – Great Salt Lake (USA), 
Lake Mead (USA), Lake Poopo (Bolivia), Dead Sea (Israel/Jordan), Lake Habbaniyah 
(Iraq), Lake Milh (Iraq), Lake Urmia (Iran), Aral Sea (Kazakhstan/Uzbekistan), 
Menindee Lakes (Australia), Lake Chad (Chad/Cameroon/Nigeria/Niger). 

Different examples for Aral Sea (Kazakhstan/Uzbekistan), Toshka Lakes (Egypt), and Tonle 
Sap Lake (Cambodia) regions are shown in Figures 18, 19, and 20 respectively. Each 
example has permanent water map changes throughout six decades, inland water cover 
currently used operationally (climate.v021) for IFS model at ECMWF, recent satellite image 
for reference, and a histogram of total water area over region in sq.km per each month.  
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Figure 18 - Permanent water distribution for operational static and time-varying decadal 
maps over the Aral Sea region in Kazakhstan/Uzbekistan, in the lower left corner the 

histogram shows the total water area over the region in sq.km per month. 

 

The Aral Sea (see Figure 18) had a massive diversion of water for cotton and rice cultivation 
in the 1960's after which rapid shrinking of it began. After collaborative restoration works, the 
surface area of the Northern part became stable and for the Western and Eastern parts 
shrinking slowed significantly (middle and right column plots of Figure 18 correlate with these 
events). The current static operational water distribution map (see left column middle row of 
Figure 18) represents well the average of monthly maps for the 2012-2021 period (see left 
column bottom row of Figure 18), but has strong underestimation compared to water 
distribution from previous decades.  
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Figure 19 - Permanent water distribution for operational static and time-varying decadal 
maps over the Toshka Lakes region in Egypt, in the lower left corner histogram shows the 

total water area over the region in sq.km per month. 

 

The Toshka Lakes (see Figure 19) only formed in 1998 due to massive flash floods and river 
floods in Ethiopia, which caused floodwaters to flow down the Nile River. Formed lakes first 
boomed the agriculture in the region, but soon started drying, and became almost empty by 
2018 (middle and right column plots of Figure 19 correlate with these events). The current 
static operational water distribution map (see left column middle row of Figure 19)represents 
well permanent water for the 2012-2021 period (see right column bottom row of Figure 19), 
but has strong underestimation comparing to water distribution from the previous decade 
2002-2011, and overestimation comparing to even earlier decades (region was a desert). Due 
to annual heavy rainfall and major flooding events in Sudan and South Sudan, since 2018 the 
Toshka Lakes started refilling and even formed one new lake - this regrowth was not captured 
by the data as maps represent the best suited monthly distribution over 10-year period (see 
left column bottom row of Figure 19). 
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Figure 20 - Permanent water distribution for operational static and time-varying decadal maps 
over the Tonle Sap Lake region in Cambodia, in the lower left corner the histogram shows the 
total water area over the region in sq.km per month. 

 

The Tonle Sap Lake’s (see Figure 20) water level started lowering down in the last few 
decades due to dam construction in the tributaries of the Mekong river, and lowering was 
enhanced in the last years (especially in 2020) by El Nino (middle and right column plots of 
Figure 20 correlate with these events). The current static operational water distribution map 
(see left column middle row of Figure 20) represents well the average of monthly maps for 
2012-2021 period (see left column bottom row of Figure 20), but shows some underestimation 
compared to yearly average water distribution from previous decades. The yearly cycle of the 
lake’s water cover is well captured by the data and follows rainy (from May to October) and 
dry (from November to March) seasons (see left column bottom row of Figure 20). 

 

3.3.1 Direct evaluation  

Generated maps were aggregated in space and time to understand if patterns of inter-annual 
and seasonal variability globally and regionally follow known evolution. While some first 
examples were discussed in the section above, in this section we will see direct regional 
comparison in more detail. 

Over the Northern hemisphere (90°N - 20°N, see top row of Figure 21) the total water area 
curve (see right column top row of Figure 21, yellow line) shows slight decreasing trend over 
decades, which could be explained (especially in recent years, 2012-2021) by the decrease 
of small water bodies (see middle column top row of Figure 21, fractions from 0.0 to 0.5). Total 
water area has a clear yearly cycle (see right column top row of Figure 21), which can be 
explained in general for some regions by high-pressure systems and cold air masses in the 
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winter leading to drier conditions and reduced surface water distribution, and by monsoons in 
the summer leading to intense rainfall and increased surface water distribution.   

Over the tropics (20°N - 20°S, see middle row of Figure 21), there is a total water area 
decrease from 1962-1971, which can be explained by Chad Lake shrinking (currently by 
~90%) due to variations in climate and water withdrawals for irrigation. Total water area has 
no pronounced yearly cycle (see right column middle row of Figure 21). 

Over the Southern hemisphere (20°S - 90°S, see bottom row of Figure 21), the total water 
area curve (see right column bottom row of Figure 21, yellow line) shows a decreasing trend. 
For recent years (2012-2021), this could be explained by the fact that several big lakes and 
reservoirs shrunk or became seasonal (i.e. non-permanent) due to water use for irrigation and 
lack of rainfall, or due to glacier melt, which reduces water inflow into glacier-fed water bodies. 
Total water area has a slightly more pronounced yearly cycle than in the tropics (see right 
column bottom row of Figure 21). Since some parts of the Southern hemisphere have two 
rainy seasons while other parts have only one, the cumulative signal could be mixed. The 
current plot depicts e.g. the rainy season in Southern Australia. 

 

 

 

 

Figure 21: Permanent inland water mean fraction, total grid cell number per decade and total 
water area in sq.km shown: per decade only (left), per grid cell water fraction and decade for 
permanent water (middle) and per month and decade for time-varying water (right). Statistics 
are produced from 1km resolution data for regions 90°N - 20°N (top row), 20°N - 20°S (middle 
row), 20°S - 90°S (bottom row). 

 

Over Europe (see Figure 22), the total permanent water cover is rather stable from decade to 
decade, as most lakes are permanent and situated in the Boreal climate zone, with a seasonal 
cycle that follows the period of increased precipitation. 
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Figure 22 - Permanent water mean fraction and total grid cell number (per decade), total water 
area in sq.km (per decade only, and per grid cell water fraction and decade for permanent 
water; per month and decade for time-varying water) at 1km resolution for the European 
region. 

 

Examples of regional map evaluation:  

● Over the Aral Sea (see Figure 23), the total permanent water cover is decreasing and 
monthly water cover seasonality is increasing (i.e. difference between min and max of 
12 months), which is supported by the historical drying and shallowing trend of the 
water body; 

● Over the Poopo Lake (see Figure 24), the total permanent water cover changes from 
decade to decade following major drought events, and recent decades decrease is 
associated with climate change (i.e. melt of Andes glaciers and increased draughts) 
and continuous water diversion for mining and agriculture; 

● Over the Lake Urmia (see Figure 25), the total permanent water cover is decreasing 
from decade to decade and the decrease is more rapid in recent years. This is 
supported by Iran’s decision to grow irrigation-intensive crops since 1979. Monthly 
water cover seasonality is increasing (i.e. difference between min and max of 12 
months) as the lake becomes shallower, and water monthly cover follows rainy 
seasons occuring from January till March and from October till December. 

● Over the Toshka Lakes (see Figure 26), the total permanent water cover follows 
historical formation and captures seasonality well. Maps do not capture recent re-filling 
of the lakes as the used dataset lags 3 years (currently available till end of December 
2021). 

 

 

Figure 23 - Permanent water mean fraction and total grid cell number (per decade), total water 
area in sq.km (per decade only, and per grid cell water fraction and decade for permanent 
water; per month and decade for time-varying water) at 1km resolution for the Aral Sea region. 
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Figure 24 - Permanent water mean fraction and total grid cell number (per decade), total water 
area in sq.km (per decade only, and per grid cell water fraction and decade for permanent 
water; per month and decade for time-varying water) at 1km resolution for the  Poopo Lake 
region. 

 

 

Figure 25 - Permanent water mean fraction and total grid cell number (per decade), total water 
area in sq.km (per decade only, and per grid cell water fraction and decade for permanent 
water; per month and decade for time-varying water) at 1km resolution for the Urmia Lake 
region. 

 

 

Figure 26 - Permanent water mean fraction and total grid cell number (per decade), total water 
area in sq.km (per decade only, and per grid cell water fraction and decade for permanent 
water; per month and decade for time-varying water) at 1 km resolution for the Toshka Lakes 
region. 

 

Generated maps were also compared with available reliable global datasets according to the 
total water area in sq.km at 1 km resolution (i.e. fraction at 1 km resolution multiplied by area 
of a 1 km resolution grid cell, and with all values over the region of interest are summed up): 

 
● ECMWF_perm|seasMean|seasMax (current) - generated maps were aggregated 

globally and regionally to compare min (i.e. only permanent water, always present), 
mean (i.e. averaged over 12 months), and max (i.e. maximum over 12 months) water 
extents; fractional information at 891 m near Equator resolution is derived from 30-
meter discrete information; 

● ESACCI_water - ESA CCI yearly maps represent maximum yearly water extent; 
discrete information at 300 m near Equator (i.e. 10 arc sec); 

● CGLS_perm|seas - CGLS yearly maps represent min (i.e. only permanent water, 
always present) and max (i.e. maximum of the year) water extents; fractional 
information at 100 m near Equator resolution; 

● WorldCover_water - ESA WorldCover yearly maps represent (on average) maximum 
yearly water extent; discrete information at 10 m near Equator. 

 

Over the Northern hemisphere (90°N - 20°N), the generated maps show consistently less 
water than in ESA CCI (see top row of Figure 27). The most probable reasons for that are: (i) 
difference in nominal data resolution (i.e. 30 m vs 300 m for ESA CCI); (ii) the difference in 
water type, where the generated maps capture monthly variations with the best estimate over 
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the decade being selected, while ESA CCI captures the maximum water extent of the specific 
year (ocean filtered with specially generated constant in time mask for 2015).  

Over the Tropics (20°N - 20°S; see middle row of Figure 27), the generated maps show a 
close match between ECMWF_seasMean and ECMWF_seasMax, which means that water is 
present there most of the year yet not permanently. Comparison with ESA CCI shows exactly 
the same as for Northern hemisphere and for the same reasons. We have also compared 
generated maps with CGLS and WorldCover and all of them compare very well (i.e. total 
amount of water is preserved which is important). 

Over the Southern hemisphere (20°S - 90°S), the generated maps show good correlation of 
ECMWF_seasMax and ESA CCI (see bottom row of Figure 27), with slight overestimation (i.e. 
less than 5’000 sq.km) in early 1990’s and underestimation (i.e. less than 12’000 sq.km) after 
2002. We have also compared generated maps with CGLS and WorldCover. CGLS has a 
strong overestimation of water extent into ocean, both for permanent and seasonal water over 
the southern part of Chile (area of and around Parque Nacional Bernardo O'Higgins). Most 
probably due to this overestimation, the total area of permanent water in CGLS is consistent 
with the maximum water extent from WorldCover, ESA CCI and ECMWF_seasMax and 
CGLS_seas is almost double comparing to other datasets. The WorldCover data is almost 
identical to ECMWF_seasMax, and the total water area is slightly lower than ESA CCI, which 
can be explained by the difference in their native resolutions (i.e. 10 m WorldCover vs 300 m 
ESA CCI). 
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Figure 27 - Dataset’s total water area in sq.km comparison at 1 km resolution for 90°N-20°N 
(top row), 20°N-20°S (middle row), and 20°S-90°S (bottom row); ECMWF_perm refers to 
permanent (i.e. always present) water aggregated from generated maps, ECMWF_seasMean 
- averaged over 12 months water, ECMWF_seasMax - maximum over 12 months, 
ESACCI_water - yearly maximum water extent from ESA CCI data. 

 

Over Europe (see top row of Figure 28), the comparison of the generated ECMWF_seasMax 
with ESA CCI, CGLS_seas, and WorldCover shows consistently slightly less water in 
ECMWF_seasMax, which can be also explained by the difference in the initial datasets’ 
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resolution and water type. All three datasets have a perfect match within them. ECMWF_perm 
is almost identical to CGLS_perm. This confirms that generated maps conserve the total water 
budget over Europe. 

Over the Aral Sea in Kazakhstan/ Uzbekistan (see middle row of Figure 28), the generated 
maps have a very good correlation with other datasets (e.g. 1992-2001 ECMWF_perm value 
is the same as ESA CCI data for 2001 and ECMWF_seasMax is almost the same as ESA CCI 
data for 1992). The main point to remember is that ECMWF data represents the best fit over 
the whole 10-year period, while other datasets are yearly. 

Over the Toshka Lakes in Egypt (see bottom row of Figure 28), the generated maps and ESA 
CCI have good agreement on capturing the creation of the lake, and together with CGLS all 
three datasets perfectly follow the lake’s drying period. ESA CCI, CGLS, and WorldCover 
depict well the refilling of the lake, while the generated maps miss it completely as they used 
data only up to 2021 where the last years of re-filling were considered as outliers for the 10-
year period. 
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Figure 28 - Dataset’s total water area (in sq.km) comparison at 1 km resolution for Europe (top 
row), Aral Sea (middle row), and Toshka lakes (bottom row); ECMWF_perm refers to 
permanent (i.e. always present) water aggregated from generated maps, ECMWF_seasMean 
- averaged over 12 months water, ECMWF_seasMax - maximum over 12 months, 
ESACCI_water - yearly maximum water extent from ESA CCI data. 

 

In general, the generated maps have a good coherence for permanent and maximum of the 
year water distribution. Comparison with ESA CCI generally indicates that generated maps 
underestimate water cover due to the initial resolution and water type. Nevertheless, 
sometimes coarser resolution maps with discrete information might underestimate water 
bodies extent with irregular coasts, e.g. over Lake Chad in Chad/Cameroon/Nigeria/Niger (see 
top row of Figure 29). Comparison with ESA CCI constantly shows that even 
ECMWF_seasMax is underestimating water cover, yet comparison with much higher 
resolution WorldCover data shows good coherence. Sore areas are very seasonal and 
weather dependent, e.g. the Poopo Lake in Bolivia (see bottom row of Figure 29), where all 
datasets show rather different results, nevertheless ECMWF_perm coincides with recorded 
transition of the lake into a salt pan due to no more water coming from the melted glaciers in 
Andes and continuous water diversion for mining and agriculture. 

  

 

Figure 29 - Dataset’s total water area (in sq.km) comparison at 1 km resolution for Lake Chad 
(top row), and Lake Poopo (bottom row); ECMWF_perm refers to permanent (i.e. always 
present) water aggregated from generated maps, ECMWF_seasMean - averaged over 12 
months water, ECMWF_seasMax - maximum over 12 months, ESACCI_water - yearly 
maximum water extent from ESA CCI data. 
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3.3.2  Indirect evaluation 

Generated maps were also evaluated indirectly by running a numerical offline (i.e. no feedback 
to the atmosphere) open-loop (i.e. no data assimilation) experiment with the IFS model 
(CY49R1) at ~25 km resolution (Tco399) over 1995-2019, and comparing results (i.e. skin 
temperature) with the high fidelity satellite composite product of skin temperatures CCI LAKES 
(nominal resolution 1 km, represent ~10.30 am local time; Carrea et al., 2024). Figure 30 
shows a recent satellite image and the Aral Sea representation in the current operational 
version of IFS at ~25 km resolution, as well as January, April, July and October months from 
time-varying lake covers over three recent decades (i.e. 1992-2001, 2002-2011, and 2012-
2021).  

 

 

Figure 30 - Static (current operational IFS model’s climate.v021, top row) and time-varying 
(for 1995-2001, 2002-2011, 2012-2021 decades, for January, April, July and October 
months, two bottom rows) lake covers at ~25 km resolution (Tco399) for the Aral Sea region. 

 

The IFS model's offline version was adapted to use monthly lake and land sea covers and to 
update soil moisture and soil temperature based on lake filling or drying. 

Comparisons with skin temperature observations revealed, e.g. over the Aral Sea area an 
overestimation of water cover for March in 2002-2011 and 2012-2019. This is due to the limited 
number of valid satellite observations available to generate maps for March (e.g. datasets 
used produced by JRC use satellite image's visual diapason to identify water surface, which 
is challenging during dark winter months or cloudy weather). It was revealed that due to a 
missing lake salinity parameter in the model - which results in earlier ice-on and later ice-off 
dates, and due to underestimation of the mixed-layer depth by the model -  it results in a 
mixed-layer temperature overestimation in summer (see left and middle columns top row of 
Figure 31).  

In 1995-2001 the Aral Sea water cover is much wider and match that time cover much better 
than the static (i.e. represents ~2018 year) lake cover. Model results still have overestimation 
of the duration of the ice-on period due to missing lake salinity parameter, but mixed-layer 
temperature overestimation in summer becomes negligible (see right column top row of Figure 
31). 

Even though single current static lake cover represents quite well lake cover over 2012-2019, 
use of monthly maps gives on average 1.0 K reduction in yearly bias (see left column bottom 
row of Figure 31) and 0.2 K reduction in yearly RMSE. Historically the Aral Sea had bigger 
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water area in 2002-2011 than the current period. More realistic water representation for that 
period gives on average 2.5 K reduction in yearly bias (middle column bottom row of Figure 
31) and 3.0 K reduction in yearly RMSE. In 1995-2001 the Aral Sea area was much bigger 
than in present time and much more stable during the year (see right column of Figure 31) as 
the water body on average was deeper. Realistic water representation for that period gives on 
average 4.5 K (up to 6.0 K in 1995) reduction in yearly bias (see middle column bottom row of 
Figure 31) and 4.5 K reduction in yearly RMSE. 
 

 

 

Figure 31 - Top row: Monthly and regionally averaged skin temperature yearly cycles (10 
years), for observations from CCI LAKES (OBSERVATION, black color), operational IFS 
model that uses single static lake cover (MODEL_STAT, red color), and adapted IFS model 
that uses monthly lake covers (MODEL_TIME, blue color); bottom row:  yearly and regionally 
averaged skin temperature BIAS (MODEL - OBS) over the Aral Sea region for the 1995-2001 
(right column), 2002-2011 (middle column), and 2012-2019 (left column) periods. 
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4 Conclusion 

4.1 Land cover 

- What has been achieved?  

In this study, we present a novel approach for generating yearly historical land cover maps 
spanning the period 1925 to 1992, leveraging an efficient, parallelized algorithm that integrates 
LUH2 transition data with the 1992 ESACCI land cover baseline. By systematically applying 
the transition information in reverse, the algorithm successfully reconstructs consistent global 
land cover maps that align with the ESACCI classification scheme, effectively extending its 
spatial-temporal coverage back in time. 

The algorithm demonstrates strong potential in harmonizing heterogeneous datasets 
particularly reconciling the LUH2 land-use transitions with the high-resolution satellite-derived 
ESACCI maps. This harmonization ensures that the historical reconstructions remain 
consistent with modern observations, while still reflecting the temporal evolution of land cover 
as captured by the LUH2 framework. 

- What are the shortcomings ?  

Despite its effectiveness, the algorithm faces few limitations: 

● Dependence on LUH2 Transition Data: The accuracy and fidelity of historical 
reconstructions are inherently limited by the quality, resolution, and completeness of 
the LUH2 transition data. LUH2 does not capture all nuanced local-scale land cover 
dynamics. 
 

● Validation Challenges: Long-term, high-resolution historical land cover datasets are 
scarce, making quantitative validation difficult. Although comparisons were made with 
existing datasets such as LUH2 and HILDA+, notable inconsistencies emerged, partly 
due to methodological and definitional differences. 
 

● Spatial Artifacts: The algorithm operates within fixed LUH2 subgrid boundaries, 
resulting in spatial artifacts such as blockiness in the output maps. These artifacts 
reduce the realism and continuity of simulated land cover. 
 

● Unmapped Transitions: In cases where LUH2 specifies transitions not represented in 
the ESACCI baseline, the algorithm resorts to default fallback mechanisms. While 
necessary, these heuristics introduce additional uncertainty into the historical 
reconstructions. 

 

- Future work  

To address the current limitations and improve the robustness and realism of historical land 
cover simulations, future work should consider the following enhancements: 

● Smoother Spatial Transitions: Incorporating spatial interpolation or machine learning-
based spatial regularization techniques could reduce subgrid-level artifacts and 
produce more spatially continuous land cover transitions. 
 

● Enhanced Data Integration: Future versions of the algorithm could integrate alternative 
satellite-derived datasets, historical aerial imagery, or ancillary sources (e.g., historical 
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maps, land surveys) to better inform land cover assignments during ambiguous 
transitions. 
 

● Probabilistic or Rule-based Assignment: Replace fallback heuristics with probabilistic 
modeling or rule-based systems informed by ecological plausibility and regional land 
use practices to better resolve cases where LUH2 transitions do not align with ESACCI 
categories. 
 

● Cross-Dataset Calibration: Develop methods for calibrating with and reconciling 
differences between LUH2, HILDA+, and other datasets to enable more consistent and 
validated outputs across time. 
 

● Uncertainty Quantification: Implement a framework to assess and propagate 
uncertainty introduced at each processing step, improving interpretability and 
informing users of the confidence level in the simulated maps. 

By addressing these challenges, the method can be further refined to provide a more accurate 
and comprehensive tool for studying historical land use and land cover dynamics on a global 
scale. 

4.2 LAI  

- What has been achieved?  

We have demonstrated that statistical methods can offer a feasible approach for historical LAI 
reconstruction using existing input data. Despite the model we developed lacking a 
sophisticated architecture, extensive hyperparameter tuning, and key climate inputs—such as 
precipitation, temperature, and solar radiation—as well as geomechanical information like 
elevation, morphology, soil type, and texture, it still manages to capture many key aspects of 
the original dataset. As a result, we have successfully generated an extension of the 
CONFESS LAI dataset, pushing its historical coverage back to 1925. Additionally, the model 
functions effectively as an emulator, capable of producing on-demand LAI values using only 
land-use (LU) data as input. This represents a step toward the tighter integration of machine 
learning methods with numerical approaches within the context of NWP (Numerical Weather 
Prediction) and ESM (Earth System Modeling) frameworks. 

 

- What are the shortcomings ?  

The main shortcomings of this methodology, and consequently the generated dataset, are as 
follows: 

● Lack of Monthly Climate Inputs: The model is limited in its ability to respond to inter-

annual changes due to the reliance on learned climatology and the annual nature of 

LU's data. The absence of monthly inputs such as key climate variables—precipitation, 

temperature, and solar radiation—prevents the model from capturing interannual 

variability. At best, the model can replicate the climatology, but it lacks the capacity to 

reflect year-to-year fluctuations. 

● Tendency to Fit Regional Averages: The model’s inclination to fit predictions toward 

the regional average, even with a good overall fit, results in the suppression of extreme 

high or low values. This significantly affects areas where such extremes are 

ecologically important. The issue is further exacerbated by the severe imbalance in the 

dataset, where 92% of the data points fall within the 0–1 LAI range. 
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● Independent Regional Training and Inference: Since the models are trained and 

inferred independently for fixed regions back to 1925, uncertainty grows over time, 

leading to divergence between neighboring regions. As inference extends further back 

in time, visible borders begin to emerge between these regions, which can have a 

strong impact—especially when analyzing long-term historical trends. 

 

- Future work 

For future work, we aim to address the shortcomings mentioned above. 

First and foremost, we plan to incorporate monthly climate data alongside static 
geomechanical information. Providing both high-resolution dynamic and static inputs will help 
guide the models toward more realistic and dynamic predictions. 

To tackle the border issue, an intermediate solution would be to use overlapping tiles to 
address the discontinuities. As for a more general solution, we propose developing a single 
global model or employing a moving-window approach, where a single model progressively 
shifts across the globe. This strategy allows us to utilize large volumes of data without 
encountering memory constraints, while gradually synchronizing LAI predictions across 
regions at each time step—minimizing the emergence of artificial borders as early as possible. 

These tasks are already underway as a continuation of this project in collaboration with vla 
CONCERTO and TerraDT Horizon Europe projects. 

4.3 Lake cover 

- What has been achieved?  

Decadal monthly maps based on monthly 30 m resolution input data were generated. The  
used input data is open, up to date, consistent in time, and very high resolution (15 to 100 m 
resolution). The developed methodology is automated, reliable and adaptable. In general, the 
generated maps have a good correlation with high horizontal resolution yearly datasets, i.e. 
ESA CCI (300 m), Copernicus CGLS (100 m), ESA WorldCover (10 m). 

- What are the shortcomings?  

Water input data use was challenging, which led to a more complex methodology than initially 
expected, i.e. missing data over land and over far away ocean; data limited from 78°N to 60°S; 
missing islands; unreliable data far north (e.g. Greenland). All these issues were successfully 
overcome, yet some minor errors might still be present and there is a need for alternative 
reliable information for comparison and further validation. 

Inland water is separated by a static mask adapted from Copernicus GLO30 representing 
2015, which leads to constant ocean borders, e.g. new islands and/or coastal line erosion 
interchange with inland water. This suggests the need for a better computationally cheap 
ocean and inland water separation. 

- Future work  

Currently, long run (from February 1939 til December 2019) offline with and without data 
assimilation experiments are in progress: 

● 'control' with static lake and land sea covers, static vegetation cover and type, recent 
time climatological leaf area index (LAI); 

● 'vegetation' with static lake and land sea covers, yearly varying vegetation cover and 
type, yearly varying LAI based on land cover land use changes; 
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● 'lake' with time-varying lake and land sea covers, static vegetation cover and type, 
recent time climatological leaf area index (LAI); 

● 'all' with time-varying lake and land sea covers, yearly varying vegetation cover and 
type, yearly varying LAI based on land cover land use changes. 

We plan to analyze these results and compare globally and regionally with available high 
fidelity satellite observations.  
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