
CopERnIcus climate change Service Evolution 

 

 

 

D1.1 Preliminary assessment of 
ensemble perturbation methods for 
the land-surface assimilation 
systems 

 
Due date of deliverable 31/12/2023 

Submission date 14/12/2023 

File Name CERISE-D1-1-V1.0 

Work Package /Task WP1 Task 1.1 

Organisation Responsible of 
Deliverable 

Met Norway 

Author name(s) 
Jostein Blyverket, Åsmund Bakketun, Peter Weston, 
Ewan Pinnington, Jelena Bojarova, Patricia de 
Rosnay 

Revision number V1.0 

Status Issued 

Dissemination Level Public 

 

 

 

 

The CERISE project (grant agreement No 101082139) is funded by the 
European Union.  
Views and opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or the 
Commission. Neither the European Union nor the granting authority can 
be held responsible for them. 



 

CERISE  
 

  2 

1 Executive Summary 

The purpose of this work is to develop land-surface perturbation methods in the global IFS 

(Integrated Forecasting System) and regional HARMONIE-AROME systems used in C3S 

(Copernicus Climate Change Service). Currently, the land-surface model parameters are 

under-spread in the ensemble systems. This means that the use of ensemble information to 

inform background and analysis errors in the C3S land-surface data assimilation systems is 

sub-optimal. 

 

In the ECMWF IFS system we assessed the impact of Stochastic Parameter Perturbations 

(SPP) of leaf area index (LAI) and vegetation fraction to generate realistic representations of 

the surface and near surface uncertainties.  

 

In the HARMONIE-AROME land data assimilation system we have extended the forcing 

perturbations to include snow and tested a new remapping procedure to represent the spatial 

uncertainty of the offline forcing (not only accounting for the magnitude of the errors). 

Tests are also ongoing for evaluating the spread in surface temperature and soil moisture 

using state perturbation of the aforementioned variables. In addition to this we have tested 

perturbation of surface parameters. This will allow us to do an analysis of e.g. LAI in the 

regional surface assimilation system. 
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2 Introduction 

2.1 Background 

The scope of CERISE is to enhance the quality of the C3S reanalysis and seasonal forecast 

portfolio, with a focus on land-atmosphere coupling. 

It will support the evolution of C3S, over the project’s 4 year timescale and beyond, by 

improving the C3S climate reanalysis and the seasonal prediction systems and products 

towards enhanced integrity and coherence of the C3S Earth system Essential Climate 

Variables.  

CERISE will develop new and innovative ensemble-based coupled land-atmosphere data 

assimilation approaches and land-surface initialisation techniques to pave the way for the next 

generations of the C3S reanalysis and seasonal prediction systems.  

These developments will be combined with innovative work on observation operator 

developments integrating Artificial Intelligence (AI) to ensure optimal data fusion fully 

integrated in coupled assimilation systems. They will drastically enhance the exploitation of 

past, current, and future Earth system observations over land-surfaces, including from the 

Copernicus Sentinels and from the European Space Agency (ESA) Earth Explorer missions, 

moving towards an all-sky and all-surface approach. For example, land observations can 

simultaneously improve the representation and prediction of land and atmosphere and provide 

additional benefits through the coupling feedback mechanisms. Using an ensemble-based 

approach will improve uncertainty estimates over land and lowest atmospheric levels.  

By improving coupled land-atmosphere assimilation methods, land-surface evolution, and 

satellite data exploitation, R&I inputs from CERISE will improve the representation of long-

term trends and regional extremes in the C3S reanalysis and seasonal prediction systems.   

In addition, CERISE will provide the proof of concept to demonstrate the feasibility of the 

integration of the developed approaches in the core C3S (operational Service), with the 

delivery of reanalysis prototype datasets (demonstrated in pre-operational environment), and 

seasonal prediction demonstrator datasets (demonstrated in relevant environment).  

CERISE will improve the quality and consistency of the C3S reanalysis systems and of the 

components of the seasonal prediction multi-system, directly addressing the evolving user 

needs for improved and more consistent C3S Earth system products. 

 

2.2 Scope of this deliverable 

2.2.1 Objectives of this deliverables 

This deliverable is a preliminary assessment of the ensemble perturbation methods for the 

global and regional land-surface assimilation systems.  

 

2.2.2 Work performed in this deliverable 

In this deliverable the work outlined in WP1 T1.1: Investigate land-surface perturbation 

generation methods for Land DA systems is described and evaluated. We describe 

methodology for representing uncertainties in land-surface models, and in particular how to 

obtain a more realistic ensemble spread in land and near surface variables. land-surface 
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models have several error sources; (i) error of representativeness, (ii) error in model 

parameters/parameterization of physical processes and (iii) external errors such as 

atmospheric forcing, land cover and soil classification. In this report we represent errors in the 

forcing (by perturbing the different forcing fields) and model parameter errors (by perturbing 

the model parameters, which partially encompass the sub-grid scale representativeness 

errors). 

 

2.2.3 Deviations and counter measures 

No deviations have been encountered. 

 

2.2.4 Reference Documents 

[1] Project 101082139- CERISE-HORIZON-CL4-2021-SPACE-01 Grant Agreement 

 

2.2.5 CERISE Project Partners: 

ECMWF European Centre for Medium-Range Weather Forecasts 

Met Norway Norwegian Meteorological Institute 

SMHI Swedish Meteorological and Hydrological Institute 

MF Météo-France 

DWD Deutscher Wetterdienst  

CMCC Euro-Mediterranean Center on Climate Change 

BSC Barcelona Supercomputing Centre 

DMI Danish Meteorological Institute 

Estellus Estellus 

IPMA Portuguese Institute for Sea and Atmosphere 

NILU Norwegian Institute for Air Research 

MetO Met Office 
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3 Land-surface perturbations in the HARMONIE-AROME system 

In the regional modeling system we develop our unified land data assimilation system (LDAS) 

using a sequential method; more specifically a flavor of the ensemble Kalman filter (EnKF). 

Ensemble based data assimilation relies on an ensemble of model trajectories for the 

computation of the background error covariance matrix. This error-covariance could be 

climatological or flow dependent. A climatological error-covariance could be derived by 

computing the difference between multiple cycles over a long time-period. This is a 

computationally cheap method, however we lose information about errors of the day. To 

compute a flow dependent error-covariance we can generate an ensemble of model 

trajectories that either start from different initial conditions, and/or, as is the case for land-

surface models, receive perturbed forcing inputs. The ensemble of land-surface model runs 

could then be applied to describe the background error statistics in the data assimilation. In 

this report we present methodology for perturbing the atmospheric forcing, state variables and 

static parameters (such as leaf area index and vegetation fraction).  

 

3.1 Perturbation of atmospheric forcing 

The perturbations of the atmospheric forcing follows Blyverket et al. (2019). Time-series cross-

correlated forcing fields are generated using an autoregressive lag-1 model (AR(1)). These 

perturbations in the atmospheric forcing allow for an ensemble of model runs, where the 

spread represents the model uncertainty. Precipitation and shortwave radiation have a lower 

bound of zero; the perturbations of these variables are therefore multiplicative. Perturbations 

in longwave radiation are additive. To avoid bias in the forcing we centered the perturbations 

around zero for the additive variables and around one for the multiplicative variables. We split 

the perturbation methodology into two: (i) spatial and temporal perturbation and (ii) random 

remapping of precipitation. Method (i) only affects the magnitude of the forcing, hence we are 

not able to represent e.g. misplaced precipitation fields, method (ii) addresses this issue and 

is able to represent the misplacement of precipitation (liquid and solid).  

 

3.1.1  Temporal and spatial perturbation of forcing 

The pseudo-random perturbation field, 𝑞𝑡, is modeled as: 
 

𝑞𝑡  =  𝛼𝑞𝑡−1  +  𝛽𝑤𝑡  
 

where 𝛼 =  
𝛥𝑡

𝜏
 and 𝛽 =  √(1 −  𝛼2)  where 𝜏 =  24ℎ and 𝛥𝑡 =  1ℎ.  The 𝑤𝑡 is a normally 

distributed random field. To ensure physical consistency in the perturbation parameters (e.g 

increase in longwave radiation gives a decrease in shortwave radiation), we impose cross-

correlations on the pseudo-random fields using the correlations listed in Table 1. The 

ensemble is kept unbiased centered at the original variable, which implies that the original 

forcing variable is an ensemble member and at the same time is the ensemble mean. Note 

that, since the land-surface model is nonlinear, this needs not to be true for the prognostic 

model variables. 

 
 
 

https://www.zotero.org/google-docs/?iHKDVa
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 Cross-correlation 

Variable Type Std dev PRECIP SW LW 

PRECIP Multiplicative 0.5 1 -0.8 0.5 

SW Multiplicative 0.3 -0.8 1 -0.5 

LW Additive 30 W/m2 0.5  -0.5 1 

Table 1: Fields that are perturbed using the spatial-temporal perturbation methodology. Precipitation 
(PRECIP), shortwave downward radiation (SW) and longwave downward radiation (LW). 

 
In Fig. 1 we illustrate the resulting spread in the offline forcing variables. The solid line is the 

ensemble mean while the shading is the spread of a 16 member ensemble. This figure also 

shows an example of the limitation of this method, as there is no spread for shortwave radiation 

and precipitation when the original field is zero (multiplicative perturbations). As mentioned 

above we have addressed this problem by developing random remapping of precipitation (see 

Sec. 3.1.2).  

 
Figure 1: (Top left) Shortwave radiation, solid line is ensemble mean and ensemble spread is shading, 
(top right) longwave radiation and (bottom) precipitation for one day.  
 

Figure 2 shows the time-series of the AR(1) cross-correlated perturbations for a variable (var 

0-2). The blue line is without cycling of noise, which means that after a 3 hour cycle we apply 

a new random initial condition. To allow the temporal decorrelation to have an effect we need 

to make sure that we use the t-1 noise field as initial condition for our new 3 hour cycle. This 

results in larger values of the perturbations, as shown with the blue vs black line in the figure. 

Figure 2 also illustrates how the cross-correlation results in positive perturbations for var 1 and 

negative perturbations in var 2. 

 



 

CERISE  
 

  8 

 
Figure 2: Time-series of AR(1) noise with correlation between variables (var 0-2). Blue line is noise 
without cycling of noise. Black line is with cycling.  
 

Forcing perturbations are now correlated in time and between variables, the next step is to get 

spatially correlated noise. To impose spatial correlation on the noise we apply convolution with 

a Gaussian Kernel function, which has the form:  

 

𝑞𝑡´ =  
1

𝑠
𝑞𝑡 ⋆ 𝑔 

 

where 𝑔 is the Gaussian Kernel function and 𝑠 is given by: 

 

𝑠 =  ∫ 𝑔 𝑑𝑘
 

𝑘
. 

 

Figure 3 shows the gridded noise before (left) and after (right) we apply the Gaussian Kernel 

convolution. In this particular case it is illustrated with a correlation length scale of 50 grid 

points.  
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Figure 3: (Left) Gridded noise before Gaussian Kernel convolution, (right) gridded noise after 
convolution. Length scale is 50 grid points.  

 

3.1.2 Random remapping of solid precipitation 

As described in Sec. 3.1.1, we use a multiplicative method to perturb the precipitation forcing, 

which implies that no spread will be generated over areas with zero precipitation. To account 

for this limitation we implemented a random remapping of the forcing data. First, a random 

vector field is generated with some spatial correlation as in Sec. 3.1.1. Second, the vectors 

are used to advect the indices of the grid and the precipitation field is then interpolated 

according to the new indices. The remapping is performed on the total precipitation and a 

redistribution between rain and snow is done before the variables are outputted. The 

redistribution of phase is based on the ratio 𝑟 = 𝑠𝑛𝑜𝑤/𝑡𝑜𝑡𝑎𝑙 or if no precipitation existed 

initially, a function based on 2m temperature is used to compute 𝑠𝑛𝑜𝑤 = 𝑟 × 𝑡𝑜𝑡𝑎𝑙, 𝑟𝑎𝑖𝑛 =

 (1 − 𝑟) × 𝑡𝑜𝑡𝑎𝑙. 

 

Figure 4 illustrates the remapping algorithm. Starting from a synthetic field in Fig. 4 a), we 

apply the remapping on this field and end up with the field in Fig. 4 b). The resulting difference 

field is depicted in Fig 4. c).  

 

 
Figure 4: (a) Original synthetic field, (b) after applying the remapping and (c) the difference field 
(shading) and random vector field (arrows).  
 

In Fig. 5 a) we show the forcing perturbation strategy on a precipitation field. First we apply 

spatially correlated multiplicative noise (b), before we remap this field (c). The figure clearly 
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illustrates how the remapping moves the precipitation field.  

 

 
 
Figure 5: (a) Real case field, (b) with multiplicative perturbations, (c) multiplicative + remapped field.  
Difference fields are shown in (d) multiplicative perturbation minus original field, (e) remapped minus 
multiplicative noise and (f) final multiplicative + remapped minus original field.  
 

3.2 Perturbation of model state and parameters 

3.2.1 Soil moisture and soil temperature perturbations 

For the regional setup, soil moisture and temperature perturbations are applied using the 

HARMONIE-AROME ensemble prediction system (EPS) code for surface perturbations. This 

code was originally developed for the 3 layer ISBA Force-Restore (ISBA-FR) surface scheme. 

Therefore we implemented an option to perturb more layers, as the ISBA-DF surface scheme 

has 14 soil layers. We added the option to perturb the top 3 layers (originally top 2 in ISBA-

FR). The soil moisture perturbations are multiplicative while the soil temperature perturbations 

are additive. We apply a spatial correlation length of 150 km.  

 

 
Figure 6: Illustration of soil temperature differences (K) in layer 3 without (left) and with (right) state 

perturbations of soil temperature.  
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Figure 6 shows the difference plot between two perturbed start files for the offline ensemble. 

We see how the state perturbation of soil temperature (right) increases the spread compared 

to forcing perturbations only (left). The noisy pattern in the figure to the left is because the 

experiment does not have any spatial correlation in the forcing perturbation.  

 

3.2.2 Perturbation of surface parameters 

LAI quantifies the amount of leaf material in a canopy and is measured as a ratio of a one-

sided leaf area of the canopy to the ground surface area. In land-surface models LAI plays a 

crucial role in parameterizing impact from the biogeochemical and biophysical processes and 

modeling energy absorption and evapotranspiration. At the same time several sources of 

uncertainty are associated with the estimate of LAI. We have implemented a method for 

perturbing LAI in a physically-consistent way. The standard LAI perturbation technique applies 

a constant amplitude perturbation to the whole LAI field. As a result, an inconsistent LAI field 

might be obtained with such a perturbation technique. In certain occasions LAI might be 

unrealistically reduced over some forested areas, or LAI can be unrealistically increased over 

some bare soil areas. Such spurious LAI realizations lead to an unphysical response and 

degrade performance of the ensemble-based land-surface scheme.  

We implement a robust LAI perturbation method where LAI is perturbed independently at each 

grid-box based on the statistical information specific for each grid-box. The rationale behind 

the method is the observation that variability of the LAI in a certain area depends on the 

temporal change rate in this area and that LAI changes rapidly only during some periods of 

the year (in spring and in fall) and is slowly changing during the rest of the year. 

 

3.3 Resulting spread in surface and near surface variables 

3.3.1 Soil temperature, moisture and snow 

Here we present a preliminary assessment of the regional system ensemble perturbations in 

three set of experiments, (i) forcing perturbations to the offline runs; providing the ensemble 

spread in the HARMONIE-AROME EnKF surface analysis (Forcing pert.), (ii) an EPS run 

providing the surface ensemble to the surface analysis using IFSENS as the only perturbation 

method (EPS bdPert), and (iii) offline snow experiment using perturbed forcing and random 

remapping of precipitation. The latter being the experiments for developing the local ensemble 

transform Kalman filter (LETKF) for snow data assimilation in the regional offline system.  

 

Figure 7 shows error estimates for layer 1 soil temperature for 00 and 12 UTC. We show 

results for the experiment perturbing forcing only (Forcing pert, blue) and the EPS experiment 

using IFSENS on the boundaries (EPS bdPert, orange). The target error values are taken from 

Holmes et al (2012). It is evident that only perturbing the forcing or applying bdPert in EPS 

mode underestimates the errors. 

 

For soil moisture there is no truth with which to evaluate the ensemble spread (Draper 2021). 

An alternative error evaluation method is triple collocation, but that is outside the scope of this 

report. Error numbers reported in the literature are often around 0.05-0.06 m3/m3 in unbiased 

root-mean-square error (Reichle et al., 2017). When evaluating the same experiments as we 

did for soil temperature, we find a domain mean of 0.01 m3/m3 for the EPS bdPert experiment, 

https://www.zotero.org/google-docs/?OlvhV0
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and 0.001 m3/m3 for the forcing perturbation experiment. The EPS bdPert experiment number 

is around the same value as found in Draper (2021). One thing to note is that this is only after 

3 days and the forcing perturbation experiment uses a much larger domain than the EPS 

experiment. This would most likely result in large areas without any substantial precipitation, 

which is the main driver for soil moisture spread using this methodology.  

 

 
Figure 7: Domain mean ensemble spread for offline perturbation of forcing only (Forcing pert, blue) 

and ensemble mode (EPS bdPert, orange) using only different boundary conditions (IFSENS).  

 

Exp Forcing Members Assimilated obs. 

ctrl MEPS 1 - 

openloop MEPS 15 - 

ref  Nordic analysis 1 - 

daexp MEPS (same as 
openloop) 

15 ref (snow depth) 

Table 2: Experimental setup for assessment of ensemble spread of snow properties. MEPS - MetCoOp 

ensemble prediction system with 2 km resolution, Nordic analysis is a post-processed 1 km product 

utilizing synop observations, citizen observations and radar to correct temperature, humidity and 

precipitation. 

 

The impact of perturbed forcing on surface snow is evaluated through offline experiments 

using the 12 layer ISBA Explicit Snow (ISBA-ES) scheme. Four experiments covering one full 

year from 1st July 2021 to 1st July 2022 are set up as in Table 2. The domain covers northern 
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Scandinavia and includes 83 in situ snow depth stations. The snow depth ensemble is 

evaluated in these points.  

 

A spread-skill time series plot (Fig. 8) indicates that the ensemble is underdispersive relative 

to the standard errors (orange dashed smaller than the orange solid line). We note that the 

increase in standard error of the openloop relative to ctrl is consistent with the ensemble 

spread. For the assimilation experiment (green lines) both the errors and ensemble spread 

are reduced and they are around the same size.  

 

 
Figure 8: Ensemble spread (standard deviation of ensemble) and skill (error standard deviation) of ctrl 

(blue), openloop (orange), and daexp (green) relative to ref.  

 

To evaluate the spatial properties of the surface snow ensemble, we show the ensemble 

covariance between observed snow depth and a control variable (snow water equivalent - 

SWE) in layer 6, with and without localization (see Fig. 9). Positive values indicate that positive 

innovations (model has too little snow) give positive increments (analysis adds SWE). We 

expect the ensemble covariances to be consistent (same sign) close to the observation. 

However, topography and variation of surface type can result in opposite signs. When no 

localization is applied, it is difficult to distinguish between real and spurious correlations; this 

might indicate that our ensemble is too small.  

 

In Fig. 9 we have utilized the partial analysis increment (PAI), which can be derived from the 

LETKF (Diefenbach et al., 2023). The PAI is an approximation of the influence (potential 

increment) of a single station without the need for single observation experiments.  

 

https://www.zotero.org/google-docs/?2lpW8d
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Figure 9: Structure function for one assimilation cycle for the snow water equivalent - SWE layer 6 

control variable relative to snow depth observation, with (top) and without (bottom) localization. (Left) is 

for patch 1, open land, and (right) is for patch 2, vegetation. PAI - partial analysis increment is a bi-

product of the local ensemble transform Kalman filter (LETKF). 

 

3.3.2 Coupling between surface and near surface variables 

In Fig. 10 we plot ensemble correlation between soil moisture layer 1 and 2m specific humidity 

for the EPS bdPert and Forcing pert. (offline) experiment and bin it by the soil wetness index 

(SWI) in the respective grid cell. The rationale behind these plots is to both evaluate our 

modeling system (that the connection between variables are what we expect), but also to see 

what kind of EnKF increments we could expect in both offline and coupled experiments.  
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Figure 10: Ensemble correlation between surface soil moisture (WG1) for patch 1 and 2m specific 

humidity for patch 1 at 00 (top) and 12 (bottom). Blue is EPS mode where we use IFSENS boundaries 

while orange is for forcing perturbation of the offline runs.  

 

Figure 10 (top) shows that the correlation at 00 UTC for the EPS bdPert is positive (but small) 

and in accordance with Draper (2021). This means that if we add soil moisture in the analysis 

we will get a positive 2m specific humidity increment and vice versa. For wet soil the correlation 

is close to zero, which most likely indicates that it is energy limited. 

 

The 2m humidity and soil moisture is much more correlated at 12 UTC, Fig. 10 (bottom). Here 

we see that the EPS bdPert (blue) has a positive correlation, again decreasing to zero for wet 

soil (large SWI). For not too wet soils it means that if the analysis increment adds soil moisture 

it will increase the atmospheric humidity, which again seems reasonable.  

 

In Forcing pert. we see a negative correlation, which means that a positive increment in 

specific humidity translates to a negative increment in soil moisture. If our first guess specific 

humidity is too dry (O-minus-F > 0) we will compensate by removing moisture from the soil. A 

negative soil moisture increment could then result in further drying in the subsequent coupled 

run, as there is less moisture available for evapotranspiration. Note that this is for layer 1 only 
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(top centimeter of the soil) and a further evaluation with deeper layers would need to be done 

in future.  

 

 
Figure 11: Ensemble correlation between surface soil moisture (WG1) for patch 1 and 2m temperature 

for patch 1 at 00 (top) and 12 (bottom). Blue is EPS mode where we use IFSENS boundaries while 

orange is for forcing perturbation of the offline runs.  

 

For correlation between soil moisture and 2m temperature (Fig: 11), we see that for both the 

offline and online run the correlation is negative and largest at 12 UTC. This is reasonable as 

an increment in one of the variables results in an increment of the opposite sign in the second 

variable. The size of the correlation is around the same magnitude as found in Draper (2021).  
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4 Land-Surface Perturbations in the IFS System 

4.1 Overview 

The core land-surface data assimilation scheme at ECMWF is the Simplified Extended Kalman 

FIlter (SEKF) (de Rosnay et al. 2013). This scheme already uses ensemble information from 

the atmospheric Ensemble of Data Assimilations (EDA) (Bonavita et al. 2012) to diagnose the 

linearised observation operator, implemented in June 2019 as part of CY46R1, in place of the 

more traditional finite-difference method. The atmospheric EDA provides us with a great 

starting point to incorporate more ensemble information into the LDAS via background errors 

and spread in land-surface parameters. However, currently many land-surface parameters 

within the EDA are underdispersed. This can potentially lead to issues of overconfidence and 

ensemble collapse when moving towards increased utilisation of the EDA for the land-surface. 

The lack of spread in the surface fields also hampers our ability to apply the correct updates 

to fields such as 2m temperature and relative humidity. In order to remedy the issue of an 

under-spread ensemble at the surface we have explored perturbation schemes for land-

surface parameters. It has been shown that land-surface variables of soil moisture and 2m 

temperature/relative humidity are sensitive to the parameters of leaf area index and vegetation 

fraction in work by Draper et al. (2021). They show that perturbing the parameters of 

vegetation fraction and leaf area index across an ensemble can help to significantly increase 

spread in a number of land-surface variables. We have set up an ensemble of ECLand 

(Boussetta et al. 2021) offline model runs using the different realisations of meteorological 

forcing from the EDA. These model runs give us a good benchmark for how much additional 

ensemble spread we can expect to achieve from land-surface parameter perturbations over 

the current spread with the different realisations of meteorological forcing. 

 

4.2 Methodology 

 

In initial results with the ECLand offline model (Boussetta et al. 2021) we found good increases 

in spread (10-40%) by varying the parameters of vegetation fraction and leaf area index with 

a simplistic additive Gaussian noise function, when compared to an ensemble with no such 

parameter perturbations. However, this simple function also led to some unwanted spatial 

artifacts due to the application of a blanket correction (completely spatially and temporally 

consistent) for any given ensemble member. It was therefore decided to move towards a 

methodology closer inline with the Stochastic Perturbed Parameter (SPP) scheme already 

implemented at ECMWF for certain atmospheric fields (Lang et al. 2021). This employs a 

Gaussian correlation function in time and space to generate fields of random noise with which 

to perturb the desired parameters. We chose a length scale of 3 months in time (consistent 

with leaf area index evolution) and have tested 3 differing spatial length scales as shown in 

Figure 12. Table 3 shows the different offline ECLand model ensemble experiment 

specifications (e.g. combinations of parameters and length scales).  
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Figure 12: Spatial representation of different random fields generated with Gaussian noise of varying 

length scales (100, 500, 1000 km). 

 

 

Experiment Land parameters perturbed Length scale (km) 

 LAI Veg Frac 100 500 1000 

EDA (control) - - - - - 

spp_lai_500km x   x  

spp_cvt_500km  x   x  

spp_laicvt_100km x x x   

spp_laicvt_500km x x  x  

spp_laicvt_1000km x x   x 

Table 3: Table outlining the experiments conducted with the ensemble of ECLand offline simulations. 

 

In Figure 13 we show what these perturbations and resulting model prognostic variables might 

look like at a single grid point; here we can see an increase in spread over the ensemble with 

just perturbed meteorological forcing from the EDA. 
 

 

Figure 13: Representation of what the parameter perturbations and resulting model prognostic 

variables look like at a single grid point for a year-long model run. Orange shows the ECLand ensemble 
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run with only meteorological forcing perturbations from the EDA, Blue shows the ensemble when we 

add land-surface parameter perturbations (here for Leaf Area Index).  

4.3 Results 

In Figure 14 to 19 we show the results of the experiments outlined in Table 3, each Figure 

displays the spread from the control in the top left and then how the spread 

increases/decreases relative to this control in the subsequent 5 panels. For soil moisture, soil 

temperature, skin temperature and snow depth we find larger contributions to the increase in 

spread from perturbing vegetation fraction over leaf area index. This is due largely to changes 

in the bare soil fraction leading to an update in the model fluxes. In contrast, for net CO2 flux 

and evapotranspiration we find the largest contributions from perturbing leaf area index, which 

makes physical sense as leaf area index is one of the main controls over photosynthesis and 

transpiration. For the majority of variables we find slightly noisy results if we perturb a single 

parameter (LAI or vegetation fraction) but achieve a regularising effect by perturbing both LAI 

and vegetation fraction together. 

 

Overall the difference in spread between the tested length scales is minor. For all variables 

we are finding positive increases in spread when perturbing both parameters over the control 

with just perturbed meteorology from the EDA. This is particularly encouraging for snow depth 

which is difficult to directly perturb in a physically consistent way. The largest increases in 

spread are found for net CO2 flux, this is expected as LAI is the main constraint on CO2 flux 

and the control has the same LAI profiles across all ensemble members and thus a very small 

spread in CO2 flux. 

 

 
Figure 14: Figure showing the EDA spread for top layer soil moisture (top left) and the 

increase/decrease in spread for the different experiments outlined in Table 4.1 from the EDA 

benchmark. 
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Figure 15: Figure showing the EDA spread for Net CO2 flux (top left) and the increase/decrease in 

spread for the different experiments outlined in Table 3 from the EDA benchmark. 

 

Figure 16: Figure showing the EDA spread for top layer soil temperature (top left) and the 

increase/decrease in spread for the different experiments outlined in Table 4.1 from the EDA 

benchmark. 
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Figure 17: Figure showing the EDA spread for skin temperature (top left) and the increase/decrease in 

spread for the different experiments outlined in Table 3 from the EDA benchmark. 

 

Figure 18: Figure showing the EDA spread for snow depth (top left) and the increase/decrease in 

spread for the different experiments outlined in Table 4.1 from the EDA benchmark. 
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Figure 19: Figure showing the EDA spread for evapotranspiration (top left) and the 

increase/decrease in spread for the different experiments outlined in Table 3 from the EDA 

benchmark. 
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5 Summary and Conclusions 

From the regional perspective we have extended the offline forcing perturbations to also have 

spatially correlated noise, and with cycling of perturbations (start from previous cycle noise). 

The forcing perturbations have been extended and tested for snow and we have implemented 

a new remapping procedure to represent the spatial uncertainty of the offline forcing (not only 

accounting for the magnitude of the errors). These developments are taken into CERISE WP1 

Tasks 1.2 and 1.3, where we are working on a local ensemble transform Kalman filter (LETKF) 

for surface data assimilation. Tests are also ongoing for evaluating the spread in surface 

temperature and soil moisture using spatially correlated forcing and state perturbation of the 

same variables. In addition to this we have extended the perturbation of surface parameters 

to offline runs (a feature which was only available in coupled HARMONIE-AROME runs). This 

will allow us to e.g. add leaf area index (LAI) to the control variable in the surface assimilation 

system.  

 

The multi-layer soil scheme we use here ISBA-DF (soil) has not earlier been evaluated in an 

ensemble prediction system (EPS). Here we have extended the surface perturbations to this 

scheme and started tests in a coupled system. We saw that the ensemble correlations 

between surface and near surface variables were reasonable. The EPS tests allow us to 

implement and use our land-surface EnKF to update the EPS surface ensemble (previously 

only based on an offline ensemble in the coupled runs). 

 

From the global perspective we have outlined a number of experiments perturbing land-

surface parameters across an ensemble of land-surface model simulations with the ECMWF 

ECLand system. We have judged the increase in land-surface variable spread that these 

perturbations offer versus a control ensemble forced with perturbed meteorological forcing 

from an atmospheric Ensemble of Data Assimilations (EDA). For all outputted model variables 

we find positive increases in spread when perturbing both Leaf Area Index and Vegetation 

Fraction. These positive increases have been made more robust by the Stochastically 

Perturbed Parameter (SPP) methodology, using a Gaussian correlation function in time and 

space to generate correlated fields of random noise. The largest increases in spread are found 

for net CO2 flux, this bodes well as ECMWF moves further towards the analysis and 

forecasting of carbon fluxes. The next steps for this work will be to test such perturbations 

within the coupled system to better understand the feedback with the atmosphere. This work 

is currently underway, where we have introduced such perturbations into the atmospheric IFS 

EDA. 
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